L(s) = 1 | + 2·5-s − 18·9-s − 24·13-s + 2·25-s − 80·29-s − 94·37-s + 62·41-s − 36·45-s − 180·53-s + 44·61-s − 48·65-s − 14·73-s + 243·81-s + 238·89-s − 14·97-s − 302·109-s + 448·113-s + 432·117-s + 50·125-s + 127-s + 131-s + 137-s + 139-s − 160·145-s + 149-s + 151-s + 157-s + ⋯ |
L(s) = 1 | + 2/5·5-s − 2·9-s − 1.84·13-s + 2/25·25-s − 2.75·29-s − 2.54·37-s + 1.51·41-s − 4/5·45-s − 3.39·53-s + 0.721·61-s − 0.738·65-s − 0.191·73-s + 3·81-s + 2.67·89-s − 0.144·97-s − 2.77·109-s + 3.96·113-s + 3.69·117-s + 2/5·125-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s − 1.10·145-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + ⋯ |
Λ(s)=(=(173056s/2ΓC(s)2L(s)Λ(3−s)
Λ(s)=(=(173056s/2ΓC(s+1)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
173056
= 210⋅132
|
Sign: |
1
|
Analytic conductor: |
128.486 |
Root analytic conductor: |
3.36677 |
Motivic weight: |
2 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 173056, ( :1,1), 1)
|
Particular Values
L(23) |
≈ |
0.4467295629 |
L(21) |
≈ |
0.4467295629 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 13 | C2 | 1+24T+p2T2 |
good | 3 | C2 | (1+p2T2)2 |
| 5 | C2 | (1−8T+p2T2)(1+6T+p2T2) |
| 7 | C22 | 1+p4T4 |
| 11 | C22 | 1+p4T4 |
| 17 | C2 | (1−16T+p2T2)(1+16T+p2T2) |
| 19 | C22 | 1+p4T4 |
| 23 | C1×C1 | (1−pT)2(1+pT)2 |
| 29 | C2 | (1+40T+p2T2)2 |
| 31 | C22 | 1+p4T4 |
| 37 | C2 | (1+24T+p2T2)(1+70T+p2T2) |
| 41 | C2 | (1−80T+p2T2)(1+18T+p2T2) |
| 43 | C1×C1 | (1−pT)2(1+pT)2 |
| 47 | C22 | 1+p4T4 |
| 53 | C2 | (1+90T+p2T2)2 |
| 59 | C22 | 1+p4T4 |
| 61 | C2 | (1−22T+p2T2)2 |
| 67 | C22 | 1+p4T4 |
| 71 | C22 | 1+p4T4 |
| 73 | C2 | (1−96T+p2T2)(1+110T+p2T2) |
| 79 | C2 | (1+p2T2)2 |
| 83 | C22 | 1+p4T4 |
| 89 | C2 | (1−160T+p2T2)(1−78T+p2T2) |
| 97 | C2 | (1−130T+p2T2)(1+144T+p2T2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.29905166719647095589353030257, −10.75173039444051713424636902245, −10.48614050325251223733904924575, −9.569656809423703145810550706156, −9.509207406736478001463496967803, −9.054678408906239659996246015826, −8.582645852115927996849715601487, −7.78175845676634739206104981931, −7.76871600921853883001956753435, −7.02431749490582890796766831814, −6.52194547920162278737915447252, −5.74970147081745967007595589089, −5.60200172361185307304694701074, −5.04099318443943936845259117297, −4.52508187023548470730925339140, −3.42722189233929092981039472361, −3.21017195142853361201540508793, −2.27040762533274432061971840140, −1.92523458226620130090730682705, −0.26482182830635757392643846210,
0.26482182830635757392643846210, 1.92523458226620130090730682705, 2.27040762533274432061971840140, 3.21017195142853361201540508793, 3.42722189233929092981039472361, 4.52508187023548470730925339140, 5.04099318443943936845259117297, 5.60200172361185307304694701074, 5.74970147081745967007595589089, 6.52194547920162278737915447252, 7.02431749490582890796766831814, 7.76871600921853883001956753435, 7.78175845676634739206104981931, 8.582645852115927996849715601487, 9.054678408906239659996246015826, 9.509207406736478001463496967803, 9.569656809423703145810550706156, 10.48614050325251223733904924575, 10.75173039444051713424636902245, 11.29905166719647095589353030257