L(s) = 1 | − 2-s − 4-s − 7-s + 8-s + 4·9-s + 6·11-s + 14-s + 3·16-s − 4·18-s − 6·22-s − 9·23-s − 25-s + 28-s − 3·32-s − 4·36-s − 14·37-s + 9·43-s − 6·44-s + 9·46-s − 6·49-s + 50-s − 12·53-s − 56-s − 4·63-s − 5·64-s + 10·67-s + 21·71-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 1/2·4-s − 0.377·7-s + 0.353·8-s + 4/3·9-s + 1.80·11-s + 0.267·14-s + 3/4·16-s − 0.942·18-s − 1.27·22-s − 1.87·23-s − 1/5·25-s + 0.188·28-s − 0.530·32-s − 2/3·36-s − 2.30·37-s + 1.37·43-s − 0.904·44-s + 1.32·46-s − 6/7·49-s + 0.141·50-s − 1.64·53-s − 0.133·56-s − 0.503·63-s − 5/8·64-s + 1.22·67-s + 2.49·71-s + ⋯ |
Λ(s)=(=(4214s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(4214s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
4214
= 2⋅72⋅43
|
Sign: |
1
|
Analytic conductor: |
0.268688 |
Root analytic conductor: |
0.719966 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 4214, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.5412741631 |
L(21) |
≈ |
0.5412741631 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1×C2 | (1+T)(1+pT2) |
| 7 | C2 | 1+T+pT2 |
| 43 | C1×C2 | (1−T)(1−8T+pT2) |
good | 3 | C22 | 1−4T2+p2T4 |
| 5 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 11 | C2 | (1−3T+pT2)2 |
| 13 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 17 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 19 | C22 | 1−20T2+p2T4 |
| 23 | C2×C2 | (1+3T+pT2)(1+6T+pT2) |
| 29 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 31 | C22 | 1−26T2+p2T4 |
| 37 | C2 | (1+7T+pT2)2 |
| 41 | C22 | 1+37T2+p2T4 |
| 47 | C22 | 1−86T2+p2T4 |
| 53 | C2 | (1+6T+pT2)2 |
| 59 | C22 | 1+55T2+p2T4 |
| 61 | C22 | 1+13T2+p2T4 |
| 67 | C2×C2 | (1−14T+pT2)(1+4T+pT2) |
| 71 | C2×C2 | (1−12T+pT2)(1−9T+pT2) |
| 73 | C22 | 1−20T2+p2T4 |
| 79 | C2×C2 | (1−8T+pT2)(1+10T+pT2) |
| 83 | C22 | 1+49T2+p2T4 |
| 89 | C22 | 1−128T2+p2T4 |
| 97 | C22 | 1−41T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.40992743119000219830426930703, −12.02493042028340985141242906119, −11.19494436916396067256088003266, −10.41052341605502377252150880437, −9.844829833303857857340526608476, −9.505931410169624923239388157236, −8.994621533683078515979595306289, −8.227068586557118849738869505629, −7.62445480258900598893734797038, −6.71059934653250726444651732388, −6.31644324564184210493440834356, −5.19765492894545924172017700826, −4.07724382311546908680728359391, −3.71331134171430874660508363364, −1.61452194687764831160312520057,
1.61452194687764831160312520057, 3.71331134171430874660508363364, 4.07724382311546908680728359391, 5.19765492894545924172017700826, 6.31644324564184210493440834356, 6.71059934653250726444651732388, 7.62445480258900598893734797038, 8.227068586557118849738869505629, 8.994621533683078515979595306289, 9.505931410169624923239388157236, 9.844829833303857857340526608476, 10.41052341605502377252150880437, 11.19494436916396067256088003266, 12.02493042028340985141242906119, 12.40992743119000219830426930703