Properties

Label 4-42e4-1.1-c3e2-0-17
Degree $4$
Conductor $3111696$
Sign $1$
Analytic cond. $10832.5$
Root an. cond. $10.2019$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·5-s + 51·11-s + 61·13-s − 24·17-s + 169·19-s + 192·23-s − 115·25-s + 39·29-s − 92·31-s − 173·37-s − 174·41-s − 497·43-s − 180·47-s − 285·53-s + 153·55-s + 1.26e3·59-s + 328·61-s + 183·65-s − 875·67-s + 1.40e3·71-s − 1.36e3·73-s − 182·79-s + 399·83-s − 72·85-s − 822·89-s + 507·95-s + 841·97-s + ⋯
L(s)  = 1  + 0.268·5-s + 1.39·11-s + 1.30·13-s − 0.342·17-s + 2.04·19-s + 1.74·23-s − 0.919·25-s + 0.249·29-s − 0.533·31-s − 0.768·37-s − 0.662·41-s − 1.76·43-s − 0.558·47-s − 0.738·53-s + 0.375·55-s + 2.80·59-s + 0.688·61-s + 0.349·65-s − 1.59·67-s + 2.34·71-s − 2.18·73-s − 0.259·79-s + 0.527·83-s − 0.0918·85-s − 0.979·89-s + 0.547·95-s + 0.880·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3111696 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3111696 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(3111696\)    =    \(2^{4} \cdot 3^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(10832.5\)
Root analytic conductor: \(10.2019\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 3111696,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(5.583486715\)
\(L(\frac12)\) \(\approx\) \(5.583486715\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5$D_{4}$ \( 1 - 3 T + 124 T^{2} - 3 p^{3} T^{3} + p^{6} T^{4} \)
11$D_{4}$ \( 1 - 51 T + 3184 T^{2} - 51 p^{3} T^{3} + p^{6} T^{4} \)
13$D_{4}$ \( 1 - 61 T + 2118 T^{2} - 61 p^{3} T^{3} + p^{6} T^{4} \)
17$D_{4}$ \( 1 + 24 T + 1762 T^{2} + 24 p^{3} T^{3} + p^{6} T^{4} \)
19$D_{4}$ \( 1 - 169 T + 20730 T^{2} - 169 p^{3} T^{3} + p^{6} T^{4} \)
23$C_2$ \( ( 1 - 96 T + p^{3} T^{2} )^{2} \)
29$D_{4}$ \( 1 - 39 T + 12094 T^{2} - 39 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 + 92 T + 48873 T^{2} + 92 p^{3} T^{3} + p^{6} T^{4} \)
37$D_{4}$ \( 1 + 173 T + 62490 T^{2} + 173 p^{3} T^{3} + p^{6} T^{4} \)
41$D_{4}$ \( 1 + 174 T - 2846 T^{2} + 174 p^{3} T^{3} + p^{6} T^{4} \)
43$D_{4}$ \( 1 + 497 T + 174468 T^{2} + 497 p^{3} T^{3} + p^{6} T^{4} \)
47$D_{4}$ \( 1 + 180 T + 182914 T^{2} + 180 p^{3} T^{3} + p^{6} T^{4} \)
53$D_{4}$ \( 1 + 285 T + 224566 T^{2} + 285 p^{3} T^{3} + p^{6} T^{4} \)
59$D_{4}$ \( 1 - 1269 T + 13766 p T^{2} - 1269 p^{3} T^{3} + p^{6} T^{4} \)
61$D_{4}$ \( 1 - 328 T + 314646 T^{2} - 328 p^{3} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 + 875 T + 782544 T^{2} + 875 p^{3} T^{3} + p^{6} T^{4} \)
71$D_{4}$ \( 1 - 1404 T + 1077298 T^{2} - 1404 p^{3} T^{3} + p^{6} T^{4} \)
73$D_{4}$ \( 1 + 1361 T + 1184556 T^{2} + 1361 p^{3} T^{3} + p^{6} T^{4} \)
79$D_{4}$ \( 1 + 182 T + 992307 T^{2} + 182 p^{3} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 - 399 T + 946240 T^{2} - 399 p^{3} T^{3} + p^{6} T^{4} \)
89$D_{4}$ \( 1 + 822 T + 1516786 T^{2} + 822 p^{3} T^{3} + p^{6} T^{4} \)
97$D_{4}$ \( 1 - 841 T + 1945608 T^{2} - 841 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.043870413797742506119105227184, −8.843936182139608526676785779832, −8.406197711863902879593614381215, −8.112555006259609676034533568755, −7.33168268264071741847018725930, −7.16632895284681681750235456354, −6.80119878451450598183650776440, −6.34119735755441186842475952228, −5.96631575132704157135759826303, −5.51373486549161232979806143276, −4.93410294374654109307218445959, −4.87818999672405530096632909682, −3.90999532815131342013252620750, −3.71364937799688449384097425455, −3.23991109019821957333915354255, −2.91740681688651484027174819094, −1.79368285463605973708956418384, −1.71733159692604661448146171938, −0.985660837090024875727802129952, −0.59386709720937646950305169960, 0.59386709720937646950305169960, 0.985660837090024875727802129952, 1.71733159692604661448146171938, 1.79368285463605973708956418384, 2.91740681688651484027174819094, 3.23991109019821957333915354255, 3.71364937799688449384097425455, 3.90999532815131342013252620750, 4.87818999672405530096632909682, 4.93410294374654109307218445959, 5.51373486549161232979806143276, 5.96631575132704157135759826303, 6.34119735755441186842475952228, 6.80119878451450598183650776440, 7.16632895284681681750235456354, 7.33168268264071741847018725930, 8.112555006259609676034533568755, 8.406197711863902879593614381215, 8.843936182139608526676785779832, 9.043870413797742506119105227184

Graph of the $Z$-function along the critical line