L(s) = 1 | − 3-s + 9-s + 8·11-s + 6·25-s − 27-s − 8·33-s − 2·49-s + 8·59-s + 12·73-s − 6·75-s + 81-s + 24·83-s − 28·97-s + 8·99-s + 8·107-s + 26·121-s + 127-s + 131-s + 137-s + 139-s + 2·147-s + 149-s + 151-s + 157-s + 163-s + 167-s − 22·169-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 1/3·9-s + 2.41·11-s + 6/5·25-s − 0.192·27-s − 1.39·33-s − 2/7·49-s + 1.04·59-s + 1.40·73-s − 0.692·75-s + 1/9·81-s + 2.63·83-s − 2.84·97-s + 0.804·99-s + 0.773·107-s + 2.36·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.164·147-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.69·169-s + ⋯ |
Λ(s)=(=(442368s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(442368s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
442368
= 214⋅33
|
Sign: |
1
|
Analytic conductor: |
28.2057 |
Root analytic conductor: |
2.30454 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 442368, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.914981930 |
L(21) |
≈ |
1.914981930 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1 | 1+T |
good | 5 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 7 | C22 | 1+2T2+p2T4 |
| 11 | C2 | (1−4T+pT2)2 |
| 13 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 17 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 19 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 23 | C2 | (1+pT2)2 |
| 29 | C22 | 1−54T2+p2T4 |
| 31 | C22 | 1−46T2+p2T4 |
| 37 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 41 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 43 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 47 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 53 | C22 | 1−6T2+p2T4 |
| 59 | C2 | (1−4T+pT2)2 |
| 61 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 67 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 71 | C2 | (1−16T+pT2)(1+16T+pT2) |
| 73 | C2 | (1−6T+pT2)2 |
| 79 | C22 | 1−142T2+p2T4 |
| 83 | C2 | (1−12T+pT2)2 |
| 89 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 97 | C2 | (1+14T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.684043979652876988066025176599, −8.198948572611240427865165792362, −7.61532598445505021231566482492, −6.98089040034932339267148531426, −6.71372099189548872370259188607, −6.39335751084534575278078850353, −5.91040934760801511512508817965, −5.21950175494313500320865809431, −4.83814835762951883923045406987, −4.13901961167284522711150074983, −3.82169131902864432935982281522, −3.23290331977889648543182041186, −2.32652027208272497884774882902, −1.48465297543568880446390570490, −0.870220222855083091023826253514,
0.870220222855083091023826253514, 1.48465297543568880446390570490, 2.32652027208272497884774882902, 3.23290331977889648543182041186, 3.82169131902864432935982281522, 4.13901961167284522711150074983, 4.83814835762951883923045406987, 5.21950175494313500320865809431, 5.91040934760801511512508817965, 6.39335751084534575278078850353, 6.71372099189548872370259188607, 6.98089040034932339267148531426, 7.61532598445505021231566482492, 8.198948572611240427865165792362, 8.684043979652876988066025176599