L(s) = 1 | − 3-s − 4·5-s + 9-s + 4·15-s − 8·19-s + 6·25-s − 27-s + 12·29-s − 8·43-s − 4·45-s + 16·47-s − 2·49-s − 4·53-s + 8·57-s + 8·67-s − 4·73-s − 6·75-s + 81-s − 12·87-s + 32·95-s + 4·97-s + 12·101-s + 10·121-s − 4·125-s + 127-s + 8·129-s + 131-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 1.78·5-s + 1/3·9-s + 1.03·15-s − 1.83·19-s + 6/5·25-s − 0.192·27-s + 2.22·29-s − 1.21·43-s − 0.596·45-s + 2.33·47-s − 2/7·49-s − 0.549·53-s + 1.05·57-s + 0.977·67-s − 0.468·73-s − 0.692·75-s + 1/9·81-s − 1.28·87-s + 3.28·95-s + 0.406·97-s + 1.19·101-s + 0.909·121-s − 0.357·125-s + 0.0887·127-s + 0.704·129-s + 0.0873·131-s + ⋯ |
Λ(s)=(=(442368s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(442368s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
442368
= 214⋅33
|
Sign: |
−1
|
Analytic conductor: |
28.2057 |
Root analytic conductor: |
2.30454 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 442368, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1 | 1+T |
good | 5 | C2×C2 | (1+pT2)(1+4T+pT2) |
| 7 | C22 | 1+2T2+p2T4 |
| 11 | C22 | 1−10T2+p2T4 |
| 13 | C22 | 1+6T2+p2T4 |
| 17 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 19 | C2 | (1+4T+pT2)2 |
| 23 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 29 | C2×C2 | (1−8T+pT2)(1−4T+pT2) |
| 31 | C22 | 1−14T2+p2T4 |
| 37 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 41 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 43 | C2×C2 | (1−4T+pT2)(1+12T+pT2) |
| 47 | C2×C2 | (1−12T+pT2)(1−4T+pT2) |
| 53 | C2×C2 | (1+pT2)(1+4T+pT2) |
| 59 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 61 | C22 | 1−10T2+p2T4 |
| 67 | C2×C2 | (1−12T+pT2)(1+4T+pT2) |
| 71 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 73 | C2×C2 | (1−6T+pT2)(1+10T+pT2) |
| 79 | C22 | 1+114T2+p2T4 |
| 83 | C22 | 1+6T2+p2T4 |
| 89 | C22 | 1−114T2+p2T4 |
| 97 | C2 | (1−2T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.334580286466769938869095137697, −7.927228858346324339237951328163, −7.47184539419697069244714981888, −7.01102700383348905036395737363, −6.46956845524518855788592957843, −6.24990012986292931848349844623, −5.50821028045941260632498910659, −4.79025209594313437944303375568, −4.52353109771654662086830780511, −4.02631035226127556414869722600, −3.58103221487799765618724063676, −2.83760885317223549422167444783, −2.10122930606302984424679070602, −0.933135093514415288573050382372, 0,
0.933135093514415288573050382372, 2.10122930606302984424679070602, 2.83760885317223549422167444783, 3.58103221487799765618724063676, 4.02631035226127556414869722600, 4.52353109771654662086830780511, 4.79025209594313437944303375568, 5.50821028045941260632498910659, 6.24990012986292931848349844623, 6.46956845524518855788592957843, 7.01102700383348905036395737363, 7.47184539419697069244714981888, 7.927228858346324339237951328163, 8.334580286466769938869095137697