Properties

Label 4-450e2-1.1-c3e2-0-9
Degree $4$
Conductor $202500$
Sign $1$
Analytic cond. $704.948$
Root an. cond. $5.15275$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·4-s − 24·11-s + 16·16-s + 200·19-s − 180·29-s + 304·31-s + 876·41-s + 96·44-s + 670·49-s + 840·59-s + 1.80e3·61-s − 64·64-s − 864·71-s − 800·76-s + 320·79-s + 1.62e3·89-s + 516·101-s − 1.90e3·109-s + 720·116-s − 2.23e3·121-s − 1.21e3·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + ⋯
L(s)  = 1  − 1/2·4-s − 0.657·11-s + 1/4·16-s + 2.41·19-s − 1.15·29-s + 1.76·31-s + 3.33·41-s + 0.328·44-s + 1.95·49-s + 1.85·59-s + 3.78·61-s − 1/8·64-s − 1.44·71-s − 1.20·76-s + 0.455·79-s + 1.92·89-s + 0.508·101-s − 1.66·109-s + 0.576·116-s − 1.67·121-s − 0.880·124-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 0.000549·149-s + 0.000538·151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 202500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 202500 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(202500\)    =    \(2^{2} \cdot 3^{4} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(704.948\)
Root analytic conductor: \(5.15275\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 202500,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.953327014\)
\(L(\frac12)\) \(\approx\) \(2.953327014\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p^{2} T^{2} \)
3 \( 1 \)
5 \( 1 \)
good7$C_2^2$ \( 1 - 670 T^{2} + p^{6} T^{4} \)
11$C_2$ \( ( 1 + 12 T + p^{3} T^{2} )^{2} \)
13$C_2^2$ \( 1 - 1030 T^{2} + p^{6} T^{4} \)
17$C_2^2$ \( 1 - 5470 T^{2} + p^{6} T^{4} \)
19$C_2$ \( ( 1 - 100 T + p^{3} T^{2} )^{2} \)
23$C_2^2$ \( 1 - 6910 T^{2} + p^{6} T^{4} \)
29$C_2$ \( ( 1 + 90 T + p^{3} T^{2} )^{2} \)
31$C_2$ \( ( 1 - 152 T + p^{3} T^{2} )^{2} \)
37$C_2^2$ \( 1 - 100150 T^{2} + p^{6} T^{4} \)
41$C_2$ \( ( 1 - 438 T + p^{3} T^{2} )^{2} \)
43$C_2^2$ \( 1 - 157990 T^{2} + p^{6} T^{4} \)
47$C_2^2$ \( 1 - 166030 T^{2} + p^{6} T^{4} \)
53$C_2^2$ \( 1 - 248470 T^{2} + p^{6} T^{4} \)
59$C_2$ \( ( 1 - 420 T + p^{3} T^{2} )^{2} \)
61$C_2$ \( ( 1 - 902 T + p^{3} T^{2} )^{2} \)
67$C_2^2$ \( 1 + 447050 T^{2} + p^{6} T^{4} \)
71$C_2$ \( ( 1 + 432 T + p^{3} T^{2} )^{2} \)
73$C_2^2$ \( 1 - 646990 T^{2} + p^{6} T^{4} \)
79$C_2$ \( ( 1 - 160 T + p^{3} T^{2} )^{2} \)
83$C_2^2$ \( 1 - 1138390 T^{2} + p^{6} T^{4} \)
89$C_2$ \( ( 1 - 810 T + p^{3} T^{2} )^{2} \)
97$C_2^2$ \( 1 - 602110 T^{2} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.72848523748022034471888247187, −10.51804494624323660398869690701, −9.867074630777899289913721191661, −9.560657420168125583345953404815, −9.241127417908519745188081306337, −8.671545843867980458318146727698, −8.019383443235623041770190810278, −7.85307847814056745705920043101, −7.09416946760370309077869307043, −7.05372382141228285960933022142, −5.93781691166390590797326251258, −5.68093892312792666205441509627, −5.26132311540951957578189144581, −4.65756054180351006520017865160, −3.98117166468712184266240546502, −3.56924481079303792323852415316, −2.67582355966347299025569646735, −2.34921737102649215019836779592, −0.959846312424796667948307735738, −0.75602300209059065478118762817, 0.75602300209059065478118762817, 0.959846312424796667948307735738, 2.34921737102649215019836779592, 2.67582355966347299025569646735, 3.56924481079303792323852415316, 3.98117166468712184266240546502, 4.65756054180351006520017865160, 5.26132311540951957578189144581, 5.68093892312792666205441509627, 5.93781691166390590797326251258, 7.05372382141228285960933022142, 7.09416946760370309077869307043, 7.85307847814056745705920043101, 8.019383443235623041770190810278, 8.671545843867980458318146727698, 9.241127417908519745188081306337, 9.560657420168125583345953404815, 9.867074630777899289913721191661, 10.51804494624323660398869690701, 10.72848523748022034471888247187

Graph of the $Z$-function along the critical line