Properties

Label 4-45e2-1.1-c4e2-0-2
Degree 44
Conductor 20252025
Sign 11
Analytic cond. 21.637821.6378
Root an. cond. 2.156762.15676
Motivic weight 44
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 00

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 10·2-s + 50·4-s − 50·5-s + 80·7-s + 160·8-s − 500·10-s + 200·11-s + 410·13-s + 800·14-s + 444·16-s − 470·17-s − 2.50e3·20-s + 2.00e3·22-s − 680·23-s + 1.87e3·25-s + 4.10e3·26-s + 4.00e3·28-s + 856·31-s + 1.88e3·32-s − 4.70e3·34-s − 4.00e3·35-s − 1.51e3·37-s − 8.00e3·40-s − 1.90e3·41-s − 2.44e3·43-s + 1.00e4·44-s − 6.80e3·46-s + ⋯
L(s)  = 1  + 5/2·2-s + 25/8·4-s − 2·5-s + 1.63·7-s + 5/2·8-s − 5·10-s + 1.65·11-s + 2.42·13-s + 4.08·14-s + 1.73·16-s − 1.62·17-s − 6.25·20-s + 4.13·22-s − 1.28·23-s + 3·25-s + 6.06·26-s + 5.10·28-s + 0.890·31-s + 1.83·32-s − 4.06·34-s − 3.26·35-s − 1.10·37-s − 5·40-s − 1.13·41-s − 1.31·43-s + 5.16·44-s − 3.21·46-s + ⋯

Functional equation

Λ(s)=(2025s/2ΓC(s)2L(s)=(Λ(5s)\begin{aligned}\Lambda(s)=\mathstrut & 2025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(5-s) \end{aligned}
Λ(s)=(2025s/2ΓC(s+2)2L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 2025 ^{s/2} \, \Gamma_{\C}(s+2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 44
Conductor: 20252025    =    34523^{4} \cdot 5^{2}
Sign: 11
Analytic conductor: 21.637821.6378
Root analytic conductor: 2.156762.15676
Motivic weight: 44
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 00
Selberg data: (4, 2025, ( :2,2), 1)(4,\ 2025,\ (\ :2, 2),\ 1)

Particular Values

L(52)L(\frac{5}{2}) \approx 6.6532851976.653285197
L(12)L(\frac12) \approx 6.6532851976.653285197
L(3)L(3) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad3 1 1
5C1C_1 (1+p2T)2 ( 1 + p^{2} T )^{2}
good2C22C_2^2 15pT+25pT25p5T3+p8T4 1 - 5 p T + 25 p T^{2} - 5 p^{5} T^{3} + p^{8} T^{4}
7C22C_2^2 180T+3200T280p4T3+p8T4 1 - 80 T + 3200 T^{2} - 80 p^{4} T^{3} + p^{8} T^{4}
11C2C_2 (1100T+p4T2)2 ( 1 - 100 T + p^{4} T^{2} )^{2}
13C22C_2^2 1410T+84050T2410p4T3+p8T4 1 - 410 T + 84050 T^{2} - 410 p^{4} T^{3} + p^{8} T^{4}
17C22C_2^2 1+470T+110450T2+470p4T3+p8T4 1 + 470 T + 110450 T^{2} + 470 p^{4} T^{3} + p^{8} T^{4}
19C22C_2^2 1255458T2+p8T4 1 - 255458 T^{2} + p^{8} T^{4}
23C22C_2^2 1+680T+231200T2+680p4T3+p8T4 1 + 680 T + 231200 T^{2} + 680 p^{4} T^{3} + p^{8} T^{4}
29C22C_2^2 11212062T2+p8T4 1 - 1212062 T^{2} + p^{8} T^{4}
31C2C_2 (1428T+p4T2)2 ( 1 - 428 T + p^{4} T^{2} )^{2}
37C22C_2^2 1+1510T+1140050T2+1510p4T3+p8T4 1 + 1510 T + 1140050 T^{2} + 1510 p^{4} T^{3} + p^{8} T^{4}
41C2C_2 (1+950T+p4T2)2 ( 1 + 950 T + p^{4} T^{2} )^{2}
43C22C_2^2 1+2440T+2976800T2+2440p4T3+p8T4 1 + 2440 T + 2976800 T^{2} + 2440 p^{4} T^{3} + p^{8} T^{4}
47C22C_2^2 1640T+204800T2640p4T3+p8T4 1 - 640 T + 204800 T^{2} - 640 p^{4} T^{3} + p^{8} T^{4}
53C22C_2^2 1+1010T+510050T2+1010p4T3+p8T4 1 + 1010 T + 510050 T^{2} + 1010 p^{4} T^{3} + p^{8} T^{4}
59C22C_2^2 1+15455278T2+p8T4 1 + 15455278 T^{2} + p^{8} T^{4}
61C2C_2 (1+3808T+p4T2)2 ( 1 + 3808 T + p^{4} T^{2} )^{2}
67C22C_2^2 1680T+231200T2680p4T3+p8T4 1 - 680 T + 231200 T^{2} - 680 p^{4} T^{3} + p^{8} T^{4}
71C2C_2 (13400T+p4T2)2 ( 1 - 3400 T + p^{4} T^{2} )^{2}
73C22C_2^2 1830T+344450T2830p4T3+p8T4 1 - 830 T + 344450 T^{2} - 830 p^{4} T^{3} + p^{8} T^{4}
79C22C_2^2 132580338T2+p8T4 1 - 32580338 T^{2} + p^{8} T^{4}
83C22C_2^2 11360T+924800T21360p4T3+p8T4 1 - 1360 T + 924800 T^{2} - 1360 p^{4} T^{3} + p^{8} T^{4}
89C22C_2^2 1120421982T2+p8T4 1 - 120421982 T^{2} + p^{8} T^{4}
97C22C_2^2 13230T+5216450T23230p4T3+p8T4 1 - 3230 T + 5216450 T^{2} - 3230 p^{4} T^{3} + p^{8} T^{4}
show more
show less
   L(s)=p j=14(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−15.50133925240445655956690304286, −14.55184907174678637870667255942, −14.29068522875328337188023796455, −13.53701589646932624912826224300, −13.43245594929028086832868376588, −12.17659912175821356236754410929, −12.13149936916721339299296009676, −11.34315914346371022995727218886, −11.33027201352804955914988420686, −10.60438310806087367317294542635, −8.617773990576936694291157365692, −8.612532198335473653513341754148, −7.75145767661683963319486832515, −6.60452755635537267947732298830, −6.26719112180111702936452251074, −4.93693590769966922850743753299, −4.48070873773314034949703832178, −3.81635200927165566925464618260, −3.56099129289252301819949620407, −1.46122874547668141519099399848, 1.46122874547668141519099399848, 3.56099129289252301819949620407, 3.81635200927165566925464618260, 4.48070873773314034949703832178, 4.93693590769966922850743753299, 6.26719112180111702936452251074, 6.60452755635537267947732298830, 7.75145767661683963319486832515, 8.612532198335473653513341754148, 8.617773990576936694291157365692, 10.60438310806087367317294542635, 11.33027201352804955914988420686, 11.34315914346371022995727218886, 12.13149936916721339299296009676, 12.17659912175821356236754410929, 13.43245594929028086832868376588, 13.53701589646932624912826224300, 14.29068522875328337188023796455, 14.55184907174678637870667255942, 15.50133925240445655956690304286

Graph of the ZZ-function along the critical line