Properties

Label 4-45e2-1.1-c4e2-0-2
Degree $4$
Conductor $2025$
Sign $1$
Analytic cond. $21.6378$
Root an. cond. $2.15676$
Motivic weight $4$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 10·2-s + 50·4-s − 50·5-s + 80·7-s + 160·8-s − 500·10-s + 200·11-s + 410·13-s + 800·14-s + 444·16-s − 470·17-s − 2.50e3·20-s + 2.00e3·22-s − 680·23-s + 1.87e3·25-s + 4.10e3·26-s + 4.00e3·28-s + 856·31-s + 1.88e3·32-s − 4.70e3·34-s − 4.00e3·35-s − 1.51e3·37-s − 8.00e3·40-s − 1.90e3·41-s − 2.44e3·43-s + 1.00e4·44-s − 6.80e3·46-s + ⋯
L(s)  = 1  + 5/2·2-s + 25/8·4-s − 2·5-s + 1.63·7-s + 5/2·8-s − 5·10-s + 1.65·11-s + 2.42·13-s + 4.08·14-s + 1.73·16-s − 1.62·17-s − 6.25·20-s + 4.13·22-s − 1.28·23-s + 3·25-s + 6.06·26-s + 5.10·28-s + 0.890·31-s + 1.83·32-s − 4.06·34-s − 3.26·35-s − 1.10·37-s − 5·40-s − 1.13·41-s − 1.31·43-s + 5.16·44-s − 3.21·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2025 ^{s/2} \, \Gamma_{\C}(s+2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2025\)    =    \(3^{4} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(21.6378\)
Root analytic conductor: \(2.15676\)
Motivic weight: \(4\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 2025,\ (\ :2, 2),\ 1)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(6.653285197\)
\(L(\frac12)\) \(\approx\) \(6.653285197\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5$C_1$ \( ( 1 + p^{2} T )^{2} \)
good2$C_2^2$ \( 1 - 5 p T + 25 p T^{2} - 5 p^{5} T^{3} + p^{8} T^{4} \)
7$C_2^2$ \( 1 - 80 T + 3200 T^{2} - 80 p^{4} T^{3} + p^{8} T^{4} \)
11$C_2$ \( ( 1 - 100 T + p^{4} T^{2} )^{2} \)
13$C_2^2$ \( 1 - 410 T + 84050 T^{2} - 410 p^{4} T^{3} + p^{8} T^{4} \)
17$C_2^2$ \( 1 + 470 T + 110450 T^{2} + 470 p^{4} T^{3} + p^{8} T^{4} \)
19$C_2^2$ \( 1 - 255458 T^{2} + p^{8} T^{4} \)
23$C_2^2$ \( 1 + 680 T + 231200 T^{2} + 680 p^{4} T^{3} + p^{8} T^{4} \)
29$C_2^2$ \( 1 - 1212062 T^{2} + p^{8} T^{4} \)
31$C_2$ \( ( 1 - 428 T + p^{4} T^{2} )^{2} \)
37$C_2^2$ \( 1 + 1510 T + 1140050 T^{2} + 1510 p^{4} T^{3} + p^{8} T^{4} \)
41$C_2$ \( ( 1 + 950 T + p^{4} T^{2} )^{2} \)
43$C_2^2$ \( 1 + 2440 T + 2976800 T^{2} + 2440 p^{4} T^{3} + p^{8} T^{4} \)
47$C_2^2$ \( 1 - 640 T + 204800 T^{2} - 640 p^{4} T^{3} + p^{8} T^{4} \)
53$C_2^2$ \( 1 + 1010 T + 510050 T^{2} + 1010 p^{4} T^{3} + p^{8} T^{4} \)
59$C_2^2$ \( 1 + 15455278 T^{2} + p^{8} T^{4} \)
61$C_2$ \( ( 1 + 3808 T + p^{4} T^{2} )^{2} \)
67$C_2^2$ \( 1 - 680 T + 231200 T^{2} - 680 p^{4} T^{3} + p^{8} T^{4} \)
71$C_2$ \( ( 1 - 3400 T + p^{4} T^{2} )^{2} \)
73$C_2^2$ \( 1 - 830 T + 344450 T^{2} - 830 p^{4} T^{3} + p^{8} T^{4} \)
79$C_2^2$ \( 1 - 32580338 T^{2} + p^{8} T^{4} \)
83$C_2^2$ \( 1 - 1360 T + 924800 T^{2} - 1360 p^{4} T^{3} + p^{8} T^{4} \)
89$C_2^2$ \( 1 - 120421982 T^{2} + p^{8} T^{4} \)
97$C_2^2$ \( 1 - 3230 T + 5216450 T^{2} - 3230 p^{4} T^{3} + p^{8} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.50133925240445655956690304286, −14.55184907174678637870667255942, −14.29068522875328337188023796455, −13.53701589646932624912826224300, −13.43245594929028086832868376588, −12.17659912175821356236754410929, −12.13149936916721339299296009676, −11.34315914346371022995727218886, −11.33027201352804955914988420686, −10.60438310806087367317294542635, −8.617773990576936694291157365692, −8.612532198335473653513341754148, −7.75145767661683963319486832515, −6.60452755635537267947732298830, −6.26719112180111702936452251074, −4.93693590769966922850743753299, −4.48070873773314034949703832178, −3.81635200927165566925464618260, −3.56099129289252301819949620407, −1.46122874547668141519099399848, 1.46122874547668141519099399848, 3.56099129289252301819949620407, 3.81635200927165566925464618260, 4.48070873773314034949703832178, 4.93693590769966922850743753299, 6.26719112180111702936452251074, 6.60452755635537267947732298830, 7.75145767661683963319486832515, 8.612532198335473653513341754148, 8.617773990576936694291157365692, 10.60438310806087367317294542635, 11.33027201352804955914988420686, 11.34315914346371022995727218886, 12.13149936916721339299296009676, 12.17659912175821356236754410929, 13.43245594929028086832868376588, 13.53701589646932624912826224300, 14.29068522875328337188023796455, 14.55184907174678637870667255942, 15.50133925240445655956690304286

Graph of the $Z$-function along the critical line