L(s) = 1 | − 52·7-s − 9·9-s + 12·17-s + 296·23-s − 25·25-s + 196·31-s + 644·41-s − 952·47-s + 1.34e3·49-s + 468·63-s + 1.49e3·71-s + 2.32e3·73-s − 620·79-s + 81·81-s − 980·89-s + 2.33e3·97-s + 2.11e3·103-s − 3.51e3·113-s − 624·119-s + 1.06e3·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 108·153-s + ⋯ |
L(s) = 1 | − 2.80·7-s − 1/3·9-s + 0.171·17-s + 2.68·23-s − 1/5·25-s + 1.13·31-s + 2.45·41-s − 2.95·47-s + 3.91·49-s + 0.935·63-s + 2.50·71-s + 3.72·73-s − 0.882·79-s + 1/9·81-s − 1.16·89-s + 2.44·97-s + 2.02·103-s − 2.92·113-s − 0.480·119-s + 0.797·121-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 0.000549·149-s + 0.000538·151-s − 0.0570·153-s + ⋯ |
Λ(s)=(=(230400s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(230400s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
230400
= 210⋅32⋅52
|
Sign: |
1
|
Analytic conductor: |
802.074 |
Root analytic conductor: |
5.32174 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 230400, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
1.442163505 |
L(21) |
≈ |
1.442163505 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | 1+p2T2 |
| 5 | C2 | 1+p2T2 |
good | 7 | C2 | (1+26T+p3T2)2 |
| 11 | C22 | 1−1062T2+p6T4 |
| 13 | C22 | 1−4250T2+p6T4 |
| 17 | C2 | (1−6T+p3T2)2 |
| 19 | C22 | 1−13702T2+p6T4 |
| 23 | C2 | (1−148T+p3T2)2 |
| 29 | C22 | 1+37658T2+p6T4 |
| 31 | C2 | (1−98T+p3T2)2 |
| 37 | C22 | 1−8890T2+p6T4 |
| 41 | C2 | (1−322T+p3T2)2 |
| 43 | C22 | 1−8470T2+p6T4 |
| 47 | C2 | (1+476T+p3T2)2 |
| 53 | C22 | 1−283830T2+p6T4 |
| 59 | C22 | 1−408822T2+p6T4 |
| 61 | C22 | 1−447562T2+p6T4 |
| 67 | C22 | 1−594470T2+p6T4 |
| 71 | C2 | (1−748T+p3T2)2 |
| 73 | C2 | (1−1162T+p3T2)2 |
| 79 | C2 | (1+310T+p3T2)2 |
| 83 | C22 | 1−127510T2+p6T4 |
| 89 | C2 | (1+490T+p3T2)2 |
| 97 | C2 | (1−1166T+p3T2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.81221146958276890219999037950, −10.19550015558394138050066903886, −9.731264922067917154291395353671, −9.632961744282965074547330146565, −8.973889891101352742010430222744, −8.941459008143920262295456266787, −7.930506007637125009815533984774, −7.73031010220982061576386932080, −6.71704685867300701918069384189, −6.67248542525218255007456043378, −6.44969365685989810280548378669, −5.72609929205555750462184821079, −5.15596519191607597264847631728, −4.62794530931952565132260440889, −3.63831042779824770018486137225, −3.43114311150400801973272458921, −2.84302535743211056896166605190, −2.42948734984238144700471620260, −1.00756375656053006301426759580, −0.46254395905598964464502678398,
0.46254395905598964464502678398, 1.00756375656053006301426759580, 2.42948734984238144700471620260, 2.84302535743211056896166605190, 3.43114311150400801973272458921, 3.63831042779824770018486137225, 4.62794530931952565132260440889, 5.15596519191607597264847631728, 5.72609929205555750462184821079, 6.44969365685989810280548378669, 6.67248542525218255007456043378, 6.71704685867300701918069384189, 7.73031010220982061576386932080, 7.930506007637125009815533984774, 8.941459008143920262295456266787, 8.973889891101352742010430222744, 9.632961744282965074547330146565, 9.731264922067917154291395353671, 10.19550015558394138050066903886, 10.81221146958276890219999037950