L(s) = 1 | − 2-s − 2·3-s − 5-s + 2·6-s − 7-s + 8-s + 3·9-s + 10-s + 2·13-s + 14-s + 2·15-s − 16-s − 3·18-s + 2·19-s + 2·21-s + 23-s − 2·24-s + 25-s − 2·26-s − 4·27-s − 2·30-s + 35-s − 2·38-s − 4·39-s − 40-s − 2·42-s − 3·45-s + ⋯ |
L(s) = 1 | − 2-s − 2·3-s − 5-s + 2·6-s − 7-s + 8-s + 3·9-s + 10-s + 2·13-s + 14-s + 2·15-s − 16-s − 3·18-s + 2·19-s + 2·21-s + 23-s − 2·24-s + 25-s − 2·26-s − 4·27-s − 2·30-s + 35-s − 2·38-s − 4·39-s − 40-s − 2·42-s − 3·45-s + ⋯ |
Λ(s)=(=(254016s/2ΓC(s)2L(s)Λ(1−s)
Λ(s)=(=(254016s/2ΓC(s)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
254016
= 26⋅34⋅72
|
Sign: |
1
|
Analytic conductor: |
0.0632667 |
Root analytic conductor: |
0.501526 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 254016, ( :0,0), 1)
|
Particular Values
L(21) |
≈ |
0.1920983180 |
L(21) |
≈ |
0.1920983180 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+T+T2 |
| 3 | C1 | (1+T)2 |
| 7 | C2 | 1+T+T2 |
good | 5 | C1×C2 | (1+T)2(1−T+T2) |
| 11 | C2 | (1−T+T2)(1+T+T2) |
| 13 | C2 | (1−T+T2)2 |
| 17 | C1×C1 | (1−T)2(1+T)2 |
| 19 | C2 | (1−T+T2)2 |
| 23 | C1×C2 | (1−T)2(1+T+T2) |
| 29 | C2 | (1−T+T2)(1+T+T2) |
| 31 | C2 | (1−T+T2)(1+T+T2) |
| 37 | C1×C1 | (1−T)2(1+T)2 |
| 41 | C2 | (1−T+T2)(1+T+T2) |
| 43 | C2 | (1−T+T2)(1+T+T2) |
| 47 | C2 | (1−T+T2)(1+T+T2) |
| 53 | C1×C1 | (1−T)2(1+T)2 |
| 59 | C2 | (1−T+T2)2 |
| 61 | C1×C2 | (1+T)2(1−T+T2) |
| 67 | C2 | (1−T+T2)(1+T+T2) |
| 71 | C2 | (1+T+T2)2 |
| 73 | C1×C1 | (1−T)2(1+T)2 |
| 79 | C1×C2 | (1−T)2(1+T+T2) |
| 83 | C2 | (1−T+T2)2 |
| 89 | C1×C1 | (1−T)2(1+T)2 |
| 97 | C2 | (1−T+T2)(1+T+T2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.53807098707566870139151734339, −10.84714600543848557037994163102, −10.42221649036897612790423638392, −10.30356323187396066346087723628, −9.596514782753109281686101974481, −9.182627850665603609226991013567, −8.914048376752615677525062219855, −8.145240894306979817949908777756, −7.61066734956533661391529047058, −7.37309771885186120907951493767, −6.67027968540024341763391217447, −6.51818548568021431076483180974, −5.86682746942423310554254338530, −5.17581826413679925562563802003, −5.01052437586629966409980113166, −4.03627033499675448547696490701, −3.82233050635133160964287254791, −3.09464739201220127694230549691, −1.38591687451132591132221097641, −0.881950195852900869598048203446,
0.881950195852900869598048203446, 1.38591687451132591132221097641, 3.09464739201220127694230549691, 3.82233050635133160964287254791, 4.03627033499675448547696490701, 5.01052437586629966409980113166, 5.17581826413679925562563802003, 5.86682746942423310554254338530, 6.51818548568021431076483180974, 6.67027968540024341763391217447, 7.37309771885186120907951493767, 7.61066734956533661391529047058, 8.145240894306979817949908777756, 8.914048376752615677525062219855, 9.182627850665603609226991013567, 9.596514782753109281686101974481, 10.30356323187396066346087723628, 10.42221649036897612790423638392, 10.84714600543848557037994163102, 11.53807098707566870139151734339