Properties

Label 4-504e2-1.1-c0e2-0-0
Degree $4$
Conductor $254016$
Sign $1$
Analytic cond. $0.0632667$
Root an. cond. $0.501526$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 2·3-s − 5-s + 2·6-s − 7-s + 8-s + 3·9-s + 10-s + 2·13-s + 14-s + 2·15-s − 16-s − 3·18-s + 2·19-s + 2·21-s + 23-s − 2·24-s + 25-s − 2·26-s − 4·27-s − 2·30-s + 35-s − 2·38-s − 4·39-s − 40-s − 2·42-s − 3·45-s + ⋯
L(s)  = 1  − 2-s − 2·3-s − 5-s + 2·6-s − 7-s + 8-s + 3·9-s + 10-s + 2·13-s + 14-s + 2·15-s − 16-s − 3·18-s + 2·19-s + 2·21-s + 23-s − 2·24-s + 25-s − 2·26-s − 4·27-s − 2·30-s + 35-s − 2·38-s − 4·39-s − 40-s − 2·42-s − 3·45-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 254016 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 254016 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(254016\)    =    \(2^{6} \cdot 3^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(0.0632667\)
Root analytic conductor: \(0.501526\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 254016,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.1920983180\)
\(L(\frac12)\) \(\approx\) \(0.1920983180\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T + T^{2} \)
3$C_1$ \( ( 1 + T )^{2} \)
7$C_2$ \( 1 + T + T^{2} \)
good5$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
11$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
13$C_2$ \( ( 1 - T + T^{2} )^{2} \)
17$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
19$C_2$ \( ( 1 - T + T^{2} )^{2} \)
23$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
29$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
31$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
37$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
41$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
43$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
47$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
53$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
59$C_2$ \( ( 1 - T + T^{2} )^{2} \)
61$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
67$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
71$C_2$ \( ( 1 + T + T^{2} )^{2} \)
73$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
79$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
83$C_2$ \( ( 1 - T + T^{2} )^{2} \)
89$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
97$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.53807098707566870139151734339, −10.84714600543848557037994163102, −10.42221649036897612790423638392, −10.30356323187396066346087723628, −9.596514782753109281686101974481, −9.182627850665603609226991013567, −8.914048376752615677525062219855, −8.145240894306979817949908777756, −7.61066734956533661391529047058, −7.37309771885186120907951493767, −6.67027968540024341763391217447, −6.51818548568021431076483180974, −5.86682746942423310554254338530, −5.17581826413679925562563802003, −5.01052437586629966409980113166, −4.03627033499675448547696490701, −3.82233050635133160964287254791, −3.09464739201220127694230549691, −1.38591687451132591132221097641, −0.881950195852900869598048203446, 0.881950195852900869598048203446, 1.38591687451132591132221097641, 3.09464739201220127694230549691, 3.82233050635133160964287254791, 4.03627033499675448547696490701, 5.01052437586629966409980113166, 5.17581826413679925562563802003, 5.86682746942423310554254338530, 6.51818548568021431076483180974, 6.67027968540024341763391217447, 7.37309771885186120907951493767, 7.61066734956533661391529047058, 8.145240894306979817949908777756, 8.914048376752615677525062219855, 9.182627850665603609226991013567, 9.596514782753109281686101974481, 10.30356323187396066346087723628, 10.42221649036897612790423638392, 10.84714600543848557037994163102, 11.53807098707566870139151734339

Graph of the $Z$-function along the critical line