L(s) = 1 | + 5-s − 7-s − 3·9-s + 6·11-s − 6·13-s − 4·17-s + 14·19-s + 23-s + 5·25-s − 2·29-s − 10·31-s − 35-s − 12·37-s + 8·41-s + 10·43-s − 3·45-s − 8·47-s + 4·53-s + 6·55-s − 7·61-s + 3·63-s − 6·65-s + 12·67-s + 30·71-s − 4·73-s − 6·77-s − 79-s + ⋯ |
L(s) = 1 | + 0.447·5-s − 0.377·7-s − 9-s + 1.80·11-s − 1.66·13-s − 0.970·17-s + 3.21·19-s + 0.208·23-s + 25-s − 0.371·29-s − 1.79·31-s − 0.169·35-s − 1.97·37-s + 1.24·41-s + 1.52·43-s − 0.447·45-s − 1.16·47-s + 0.549·53-s + 0.809·55-s − 0.896·61-s + 0.377·63-s − 0.744·65-s + 1.46·67-s + 3.56·71-s − 0.468·73-s − 0.683·77-s − 0.112·79-s + ⋯ |
Λ(s)=(=(254016s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(254016s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
254016
= 26⋅34⋅72
|
Sign: |
1
|
Analytic conductor: |
16.1962 |
Root analytic conductor: |
2.00610 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 254016, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.710795790 |
L(21) |
≈ |
1.710795790 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | 1+pT2 |
| 7 | C2 | 1+T+T2 |
good | 5 | C22 | 1−T−4T2−pT3+p2T4 |
| 11 | C22 | 1−6T+25T2−6pT3+p2T4 |
| 13 | C22 | 1+6T+23T2+6pT3+p2T4 |
| 17 | C2 | (1+2T+pT2)2 |
| 19 | C2 | (1−7T+pT2)2 |
| 23 | C22 | 1−T−22T2−pT3+p2T4 |
| 29 | C22 | 1+2T−25T2+2pT3+p2T4 |
| 31 | C22 | 1+10T+69T2+10pT3+p2T4 |
| 37 | C2 | (1+6T+pT2)2 |
| 41 | C22 | 1−8T+23T2−8pT3+p2T4 |
| 43 | C22 | 1−10T+57T2−10pT3+p2T4 |
| 47 | C22 | 1+8T+17T2+8pT3+p2T4 |
| 53 | C2 | (1−2T+pT2)2 |
| 59 | C22 | 1−pT2+p2T4 |
| 61 | C22 | 1+7T−12T2+7pT3+p2T4 |
| 67 | C22 | 1−12T+77T2−12pT3+p2T4 |
| 71 | C2 | (1−15T+pT2)2 |
| 73 | C2 | (1+2T+pT2)2 |
| 79 | C22 | 1+T−78T2+pT3+p2T4 |
| 83 | C22 | 1+12T+61T2+12pT3+p2T4 |
| 89 | C2 | (1−4T+pT2)2 |
| 97 | C22 | 1−2T−93T2−2pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.14378340108373810487657285953, −10.92216905095768275382057117270, −10.02993838421158318267995573610, −9.689927047430379837963445274130, −9.359254759688915349556621399809, −9.024934753800349899135184143228, −8.790442898467280386352089049275, −7.88063406999135904968873483830, −7.38053010498683180666534694982, −7.04079806487045421841667477210, −6.70237827658543844663769146392, −5.99138620537582391937242587918, −5.43647709877168708928633998530, −5.17418723791595700847497098426, −4.57478392809827290118619777348, −3.54373699626362443910998565605, −3.42933843704614823781603007959, −2.57894530970648102149339949371, −1.87888496616004382779534560991, −0.806745403398612268029706803062,
0.806745403398612268029706803062, 1.87888496616004382779534560991, 2.57894530970648102149339949371, 3.42933843704614823781603007959, 3.54373699626362443910998565605, 4.57478392809827290118619777348, 5.17418723791595700847497098426, 5.43647709877168708928633998530, 5.99138620537582391937242587918, 6.70237827658543844663769146392, 7.04079806487045421841667477210, 7.38053010498683180666534694982, 7.88063406999135904968873483830, 8.790442898467280386352089049275, 9.024934753800349899135184143228, 9.359254759688915349556621399809, 9.689927047430379837963445274130, 10.02993838421158318267995573610, 10.92216905095768275382057117270, 11.14378340108373810487657285953