Properties

Label 4-504e2-1.1-c1e2-0-45
Degree $4$
Conductor $254016$
Sign $-1$
Analytic cond. $16.1962$
Root an. cond. $2.00610$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·7-s − 2·13-s + 8·19-s − 2·25-s − 12·31-s + 12·43-s + 9·49-s − 10·61-s + 4·67-s − 2·73-s + 28·79-s + 8·91-s − 22·97-s − 28·103-s − 16·109-s − 16·121-s + 127-s + 131-s − 32·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 22·169-s + ⋯
L(s)  = 1  − 1.51·7-s − 0.554·13-s + 1.83·19-s − 2/5·25-s − 2.15·31-s + 1.82·43-s + 9/7·49-s − 1.28·61-s + 0.488·67-s − 0.234·73-s + 3.15·79-s + 0.838·91-s − 2.23·97-s − 2.75·103-s − 1.53·109-s − 1.45·121-s + 0.0887·127-s + 0.0873·131-s − 2.77·133-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.69·169-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 254016 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 254016 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(254016\)    =    \(2^{6} \cdot 3^{4} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(16.1962\)
Root analytic conductor: \(2.00610\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 254016,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7$C_2$ \( 1 + 4 T + p T^{2} \)
good5$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 16 T^{2} + p^{2} T^{4} \)
13$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 + 16 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 16 T^{2} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
41$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
47$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 + 96 T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 + 38 T^{2} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
67$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
71$C_2^2$ \( 1 - 48 T^{2} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
79$C_2$$\times$$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 - 12 T + p T^{2} ) \)
83$C_2^2$ \( 1 + 58 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 138 T^{2} + p^{2} T^{4} \)
97$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.043462667056503806108705241629, −8.003599324063389811057123014271, −7.79878616964519320582268691818, −7.19604479377758133271602972121, −6.90075289897899598594459069842, −6.33714351407957963113019189643, −5.67190630256624796310263274860, −5.46337069349078717428764603789, −4.82302141503652744836727592228, −3.82337619004569276644530500587, −3.71611000857255139890066142245, −2.89971891583939525270261787002, −2.42448426830572615930005105990, −1.27584716179387089883907185902, 0, 1.27584716179387089883907185902, 2.42448426830572615930005105990, 2.89971891583939525270261787002, 3.71611000857255139890066142245, 3.82337619004569276644530500587, 4.82302141503652744836727592228, 5.46337069349078717428764603789, 5.67190630256624796310263274860, 6.33714351407957963113019189643, 6.90075289897899598594459069842, 7.19604479377758133271602972121, 7.79878616964519320582268691818, 8.003599324063389811057123014271, 9.043462667056503806108705241629

Graph of the $Z$-function along the critical line