L(s) = 1 | − 4·7-s − 2·13-s + 8·19-s − 2·25-s − 12·31-s + 12·43-s + 9·49-s − 10·61-s + 4·67-s − 2·73-s + 28·79-s + 8·91-s − 22·97-s − 28·103-s − 16·109-s − 16·121-s + 127-s + 131-s − 32·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 22·169-s + ⋯ |
L(s) = 1 | − 1.51·7-s − 0.554·13-s + 1.83·19-s − 2/5·25-s − 2.15·31-s + 1.82·43-s + 9/7·49-s − 1.28·61-s + 0.488·67-s − 0.234·73-s + 3.15·79-s + 0.838·91-s − 2.23·97-s − 2.75·103-s − 1.53·109-s − 1.45·121-s + 0.0887·127-s + 0.0873·131-s − 2.77·133-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.69·169-s + ⋯ |
Λ(s)=(=(254016s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(254016s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
254016
= 26⋅34⋅72
|
Sign: |
−1
|
Analytic conductor: |
16.1962 |
Root analytic conductor: |
2.00610 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 254016, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 7 | C2 | 1+4T+pT2 |
good | 5 | C22 | 1+2T2+p2T4 |
| 11 | C22 | 1+16T2+p2T4 |
| 13 | C2×C2 | (1+pT2)(1+2T+pT2) |
| 17 | C22 | 1−6T2+p2T4 |
| 19 | C2 | (1−4T+pT2)2 |
| 23 | C22 | 1+16T2+p2T4 |
| 29 | C22 | 1+16T2+p2T4 |
| 31 | C2×C2 | (1+4T+pT2)(1+8T+pT2) |
| 37 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 41 | C22 | 1−10T2+p2T4 |
| 43 | C2×C2 | (1−8T+pT2)(1−4T+pT2) |
| 47 | C22 | 1+2T2+p2T4 |
| 53 | C22 | 1+96T2+p2T4 |
| 59 | C22 | 1+38T2+p2T4 |
| 61 | C2×C2 | (1+2T+pT2)(1+8T+pT2) |
| 67 | C2×C2 | (1−12T+pT2)(1+8T+pT2) |
| 71 | C22 | 1−48T2+p2T4 |
| 73 | C2×C2 | (1−14T+pT2)(1+16T+pT2) |
| 79 | C2×C2 | (1−16T+pT2)(1−12T+pT2) |
| 83 | C22 | 1+58T2+p2T4 |
| 89 | C22 | 1−138T2+p2T4 |
| 97 | C2×C2 | (1+6T+pT2)(1+16T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.043462667056503806108705241629, −8.003599324063389811057123014271, −7.79878616964519320582268691818, −7.19604479377758133271602972121, −6.90075289897899598594459069842, −6.33714351407957963113019189643, −5.67190630256624796310263274860, −5.46337069349078717428764603789, −4.82302141503652744836727592228, −3.82337619004569276644530500587, −3.71611000857255139890066142245, −2.89971891583939525270261787002, −2.42448426830572615930005105990, −1.27584716179387089883907185902, 0,
1.27584716179387089883907185902, 2.42448426830572615930005105990, 2.89971891583939525270261787002, 3.71611000857255139890066142245, 3.82337619004569276644530500587, 4.82302141503652744836727592228, 5.46337069349078717428764603789, 5.67190630256624796310263274860, 6.33714351407957963113019189643, 6.90075289897899598594459069842, 7.19604479377758133271602972121, 7.79878616964519320582268691818, 8.003599324063389811057123014271, 9.043462667056503806108705241629