L(s) = 1 | + 62·5-s + 98·7-s − 972·11-s + 78·13-s − 560·17-s + 2.64e3·19-s − 2.27e3·23-s + 1.05e3·25-s + 7.80e3·29-s + 5.44e3·31-s + 6.07e3·35-s + 576·37-s + 1.68e4·41-s − 8.39e3·43-s + 4.53e3·47-s + 7.20e3·49-s − 1.42e3·53-s − 6.02e4·55-s − 3.41e4·59-s + 1.91e4·61-s + 4.83e3·65-s + 5.69e4·67-s + 7.22e3·71-s + 1.28e5·73-s − 9.52e4·77-s + 5.28e4·79-s + 8.44e4·83-s + ⋯ |
L(s) = 1 | + 1.10·5-s + 0.755·7-s − 2.42·11-s + 0.128·13-s − 0.469·17-s + 1.67·19-s − 0.895·23-s + 0.338·25-s + 1.72·29-s + 1.01·31-s + 0.838·35-s + 0.0691·37-s + 1.56·41-s − 0.692·43-s + 0.299·47-s + 3/7·49-s − 0.0694·53-s − 2.68·55-s − 1.27·59-s + 0.657·61-s + 0.141·65-s + 1.54·67-s + 0.170·71-s + 2.82·73-s − 1.83·77-s + 0.951·79-s + 1.34·83-s + ⋯ |
Λ(s)=(=(254016s/2ΓC(s)2L(s)Λ(6−s)
Λ(s)=(=(254016s/2ΓC(s+5/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
254016
= 26⋅34⋅72
|
Sign: |
1
|
Analytic conductor: |
6534.04 |
Root analytic conductor: |
8.99074 |
Motivic weight: |
5 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 254016, ( :5/2,5/2), 1)
|
Particular Values
L(3) |
≈ |
4.967102258 |
L(21) |
≈ |
4.967102258 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 7 | C1 | (1−p2T)2 |
good | 5 | D4 | 1−62T+2786T2−62p5T3+p10T4 |
| 11 | D4 | 1+972T+551926T2+972p5T3+p10T4 |
| 13 | D4 | 1−6pT−148150T2−6p6T3+p10T4 |
| 17 | D4 | 1+560T+2911742T2+560p5T3+p10T4 |
| 19 | D4 | 1−2642T+6454926T2−2642p5T3+p10T4 |
| 23 | D4 | 1+2272T+3276974T2+2272p5T3+p10T4 |
| 29 | D4 | 1−7808T+56228822T2−7808p5T3+p10T4 |
| 31 | D4 | 1−5444T+61676286T2−5444p5T3+p10T4 |
| 37 | D4 | 1−576T+63988358T2−576p5T3+p10T4 |
| 41 | D4 | 1−16888T+277723070T2−16888p5T3+p10T4 |
| 43 | D4 | 1+8396T+291418902T2+8396p5T3+p10T4 |
| 47 | D4 | 1−4532T+192546782T2−4532p5T3+p10T4 |
| 53 | D4 | 1+1420T+601997678T2+1420p5T3+p10T4 |
| 59 | D4 | 1+34146T+1702640302T2+34146p5T3+p10T4 |
| 61 | D4 | 1−19106T−202373982T2−19106p5T3+p10T4 |
| 67 | D4 | 1−56952T+3238977590T2−56952p5T3+p10T4 |
| 71 | D4 | 1−7224T+3534775246T2−7224p5T3+p10T4 |
| 73 | D4 | 1−128828T+8014301382T2−128828p5T3+p10T4 |
| 79 | D4 | 1−52808T+6427138206T2−52808p5T3+p10T4 |
| 83 | D4 | 1−84486T+4859890798T2−84486p5T3+p10T4 |
| 89 | D4 | 1−130972T+14510409206T2−130972p5T3+p10T4 |
| 97 | D4 | 1−194624T+26622623358T2−194624p5T3+p10T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.36642534538784457901632765727, −9.898991370242585629651535132176, −9.591656256696332292364270270137, −9.138289492770311183793425115355, −8.388355494805211027420834492546, −8.012821283629397858902762720153, −7.83270108465493667520821741688, −7.33852326907518346972394024383, −6.38970651874797197063000701809, −6.36233767872178641266434230549, −5.47788046569421298790724544548, −5.24261944571308483278222942633, −4.90453838959611915338473952714, −4.32142900050270701478367841349, −3.37962327418072056594856622378, −2.84273132491704866433304713472, −2.20794676708162849652633382074, −2.05373339389832616561133157460, −0.897039847065639093826117081168, −0.63194354444668070666829272954,
0.63194354444668070666829272954, 0.897039847065639093826117081168, 2.05373339389832616561133157460, 2.20794676708162849652633382074, 2.84273132491704866433304713472, 3.37962327418072056594856622378, 4.32142900050270701478367841349, 4.90453838959611915338473952714, 5.24261944571308483278222942633, 5.47788046569421298790724544548, 6.36233767872178641266434230549, 6.38970651874797197063000701809, 7.33852326907518346972394024383, 7.83270108465493667520821741688, 8.012821283629397858902762720153, 8.388355494805211027420834492546, 9.138289492770311183793425115355, 9.591656256696332292364270270137, 9.898991370242585629651535132176, 10.36642534538784457901632765727