L(s) = 1 | + 3-s − 4-s + 7-s − 12-s + 2·13-s + 19-s + 21-s − 27-s − 28-s − 2·31-s − 37-s + 2·39-s − 4·43-s − 2·52-s + 57-s + 61-s + 64-s − 67-s − 73-s − 76-s + 79-s − 81-s − 84-s + 2·91-s − 2·93-s + 2·97-s − 103-s + ⋯ |
L(s) = 1 | + 3-s − 4-s + 7-s − 12-s + 2·13-s + 19-s + 21-s − 27-s − 28-s − 2·31-s − 37-s + 2·39-s − 4·43-s − 2·52-s + 57-s + 61-s + 64-s − 67-s − 73-s − 76-s + 79-s − 81-s − 84-s + 2·91-s − 2·93-s + 2·97-s − 103-s + ⋯ |
Λ(s)=(=(275625s/2ΓC(s)2L(s)Λ(1−s)
Λ(s)=(=(275625s/2ΓC(s)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
275625
= 32⋅54⋅72
|
Sign: |
1
|
Analytic conductor: |
0.0686487 |
Root analytic conductor: |
0.511868 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 275625, ( :0,0), 1)
|
Particular Values
L(21) |
≈ |
0.9492907496 |
L(21) |
≈ |
0.9492907496 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C2 | 1−T+T2 |
| 5 | | 1 |
| 7 | C2 | 1−T+T2 |
good | 2 | C2 | (1−T+T2)(1+T+T2) |
| 11 | C2 | (1−T+T2)(1+T+T2) |
| 13 | C2 | (1−T+T2)2 |
| 17 | C2 | (1−T+T2)(1+T+T2) |
| 19 | C1×C2 | (1−T)2(1+T+T2) |
| 23 | C2 | (1−T+T2)(1+T+T2) |
| 29 | C1×C1 | (1−T)2(1+T)2 |
| 31 | C2 | (1+T+T2)2 |
| 37 | C1×C2 | (1+T)2(1−T+T2) |
| 41 | C1×C1 | (1−T)2(1+T)2 |
| 43 | C1 | (1+T)4 |
| 47 | C2 | (1−T+T2)(1+T+T2) |
| 53 | C2 | (1−T+T2)(1+T+T2) |
| 59 | C2 | (1−T+T2)(1+T+T2) |
| 61 | C1×C2 | (1−T)2(1+T+T2) |
| 67 | C1×C2 | (1+T)2(1−T+T2) |
| 71 | C1×C1 | (1−T)2(1+T)2 |
| 73 | C1×C2 | (1+T)2(1−T+T2) |
| 79 | C1×C2 | (1−T)2(1+T+T2) |
| 83 | C1×C1 | (1−T)2(1+T)2 |
| 89 | C2 | (1−T+T2)(1+T+T2) |
| 97 | C2 | (1−T+T2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.16540106269567765907264127829, −11.07924151792112251502279409422, −10.16007332407537852246283458413, −10.04655475174635568119719741655, −9.297326645043563784764588132241, −8.824183963331549155982399384411, −8.788553050784162048287542945783, −8.333473784875796818150507635781, −7.912143297160387157663566225452, −7.46177816708211098543208681219, −6.79320098900243615942595236088, −6.29405059514878773586456937238, −5.38076380476054149900106785153, −5.36167476301944528068221235238, −4.66579447951206809222453269216, −3.95724525056339834796238152931, −3.43586964224177625454046849980, −3.25564162382170338486175477751, −1.95026617534710363294073473319, −1.51510240631486012590937124659,
1.51510240631486012590937124659, 1.95026617534710363294073473319, 3.25564162382170338486175477751, 3.43586964224177625454046849980, 3.95724525056339834796238152931, 4.66579447951206809222453269216, 5.36167476301944528068221235238, 5.38076380476054149900106785153, 6.29405059514878773586456937238, 6.79320098900243615942595236088, 7.46177816708211098543208681219, 7.912143297160387157663566225452, 8.333473784875796818150507635781, 8.788553050784162048287542945783, 8.824183963331549155982399384411, 9.297326645043563784764588132241, 10.04655475174635568119719741655, 10.16007332407537852246283458413, 11.07924151792112251502279409422, 11.16540106269567765907264127829