Properties

Label 4-525e2-1.1-c0e2-0-1
Degree $4$
Conductor $275625$
Sign $1$
Analytic cond. $0.0686487$
Root an. cond. $0.511868$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 4-s + 7-s − 12-s + 2·13-s + 19-s + 21-s − 27-s − 28-s − 2·31-s − 37-s + 2·39-s − 4·43-s − 2·52-s + 57-s + 61-s + 64-s − 67-s − 73-s − 76-s + 79-s − 81-s − 84-s + 2·91-s − 2·93-s + 2·97-s − 103-s + ⋯
L(s)  = 1  + 3-s − 4-s + 7-s − 12-s + 2·13-s + 19-s + 21-s − 27-s − 28-s − 2·31-s − 37-s + 2·39-s − 4·43-s − 2·52-s + 57-s + 61-s + 64-s − 67-s − 73-s − 76-s + 79-s − 81-s − 84-s + 2·91-s − 2·93-s + 2·97-s − 103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 275625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 275625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(275625\)    =    \(3^{2} \cdot 5^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(0.0686487\)
Root analytic conductor: \(0.511868\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 275625,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.9492907496\)
\(L(\frac12)\) \(\approx\) \(0.9492907496\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( 1 - T + T^{2} \)
5 \( 1 \)
7$C_2$ \( 1 - T + T^{2} \)
good2$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
11$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
13$C_2$ \( ( 1 - T + T^{2} )^{2} \)
17$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
19$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
23$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
29$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
31$C_2$ \( ( 1 + T + T^{2} )^{2} \)
37$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
41$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
43$C_1$ \( ( 1 + T )^{4} \)
47$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
53$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
59$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
61$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
67$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
73$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
79$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
83$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
89$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
97$C_2$ \( ( 1 - T + T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.16540106269567765907264127829, −11.07924151792112251502279409422, −10.16007332407537852246283458413, −10.04655475174635568119719741655, −9.297326645043563784764588132241, −8.824183963331549155982399384411, −8.788553050784162048287542945783, −8.333473784875796818150507635781, −7.912143297160387157663566225452, −7.46177816708211098543208681219, −6.79320098900243615942595236088, −6.29405059514878773586456937238, −5.38076380476054149900106785153, −5.36167476301944528068221235238, −4.66579447951206809222453269216, −3.95724525056339834796238152931, −3.43586964224177625454046849980, −3.25564162382170338486175477751, −1.95026617534710363294073473319, −1.51510240631486012590937124659, 1.51510240631486012590937124659, 1.95026617534710363294073473319, 3.25564162382170338486175477751, 3.43586964224177625454046849980, 3.95724525056339834796238152931, 4.66579447951206809222453269216, 5.36167476301944528068221235238, 5.38076380476054149900106785153, 6.29405059514878773586456937238, 6.79320098900243615942595236088, 7.46177816708211098543208681219, 7.912143297160387157663566225452, 8.333473784875796818150507635781, 8.788553050784162048287542945783, 8.824183963331549155982399384411, 9.297326645043563784764588132241, 10.04655475174635568119719741655, 10.16007332407537852246283458413, 11.07924151792112251502279409422, 11.16540106269567765907264127829

Graph of the $Z$-function along the critical line