L(s) = 1 | + 3·3-s − 2·4-s + 4·7-s + 6·9-s − 6·12-s + 6·19-s + 12·21-s + 9·27-s − 8·28-s − 15·31-s − 12·36-s + 11·37-s − 10·43-s + 9·49-s + 18·57-s + 27·61-s + 24·63-s + 8·64-s + 16·67-s − 3·73-s − 12·76-s − 17·79-s + 9·81-s − 24·84-s − 45·93-s + 27·103-s − 18·108-s + ⋯ |
L(s) = 1 | + 1.73·3-s − 4-s + 1.51·7-s + 2·9-s − 1.73·12-s + 1.37·19-s + 2.61·21-s + 1.73·27-s − 1.51·28-s − 2.69·31-s − 2·36-s + 1.80·37-s − 1.52·43-s + 9/7·49-s + 2.38·57-s + 3.45·61-s + 3.02·63-s + 64-s + 1.95·67-s − 0.351·73-s − 1.37·76-s − 1.91·79-s + 81-s − 2.61·84-s − 4.66·93-s + 2.66·103-s − 1.73·108-s + ⋯ |
Λ(s)=(=(275625s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(275625s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
275625
= 32⋅54⋅72
|
Sign: |
1
|
Analytic conductor: |
17.5740 |
Root analytic conductor: |
2.04747 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 275625, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
3.287534141 |
L(21) |
≈ |
3.287534141 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C2 | 1−pT+pT2 |
| 5 | | 1 |
| 7 | C2 | 1−4T+pT2 |
good | 2 | C22 | 1+pT2+p2T4 |
| 11 | C22 | 1+pT2+p2T4 |
| 13 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 17 | C22 | 1−pT2+p2T4 |
| 19 | C2 | (1−7T+pT2)(1+T+pT2) |
| 23 | C22 | 1+pT2+p2T4 |
| 29 | C2 | (1−pT2)2 |
| 31 | C2 | (1+4T+pT2)(1+11T+pT2) |
| 37 | C2 | (1−10T+pT2)(1−T+pT2) |
| 41 | C2 | (1+pT2)2 |
| 43 | C2 | (1+5T+pT2)2 |
| 47 | C22 | 1−pT2+p2T4 |
| 53 | C22 | 1+pT2+p2T4 |
| 59 | C22 | 1−pT2+p2T4 |
| 61 | C2 | (1−14T+pT2)(1−13T+pT2) |
| 67 | C2 | (1−11T+pT2)(1−5T+pT2) |
| 71 | C2 | (1−pT2)2 |
| 73 | C2 | (1−7T+pT2)(1+10T+pT2) |
| 79 | C2 | (1+4T+pT2)(1+13T+pT2) |
| 83 | C2 | (1+pT2)2 |
| 89 | C22 | 1−pT2+p2T4 |
| 97 | C2 | (1−19T+pT2)(1+19T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.20898337722182738029236542287, −10.49831278620155977143497500687, −9.859324735411588998911630704885, −9.704529820792939241649061447679, −9.235219852338695996066870610755, −8.790112898646503023663470037703, −8.426284183633319152442091242206, −8.142644917649185827675823322083, −7.63114268332235906291337470677, −7.23859822324037744774027550113, −6.86686745065389677772433983252, −5.79601223912743460586308788474, −5.24684148744016270174242739152, −4.92459321086285908392015516086, −4.28750309905247473683710449697, −3.76773103021466577869378495194, −3.41195056851713465102309223673, −2.44495539396809546843751774069, −1.95392133223678978025031114901, −1.10319902927824971887898493440,
1.10319902927824971887898493440, 1.95392133223678978025031114901, 2.44495539396809546843751774069, 3.41195056851713465102309223673, 3.76773103021466577869378495194, 4.28750309905247473683710449697, 4.92459321086285908392015516086, 5.24684148744016270174242739152, 5.79601223912743460586308788474, 6.86686745065389677772433983252, 7.23859822324037744774027550113, 7.63114268332235906291337470677, 8.142644917649185827675823322083, 8.426284183633319152442091242206, 8.790112898646503023663470037703, 9.235219852338695996066870610755, 9.704529820792939241649061447679, 9.859324735411588998911630704885, 10.49831278620155977143497500687, 11.20898337722182738029236542287