Properties

Label 4-525e2-1.1-c1e2-0-2
Degree 44
Conductor 275625275625
Sign 11
Analytic cond. 17.574017.5740
Root an. cond. 2.047472.04747
Motivic weight 11
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 00

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s − 4·7-s − 3·9-s − 3·16-s − 12·17-s − 4·28-s − 3·36-s + 4·37-s + 12·41-s + 16·43-s + 24·47-s + 9·49-s − 24·59-s + 12·63-s − 7·64-s − 16·67-s − 12·68-s + 16·79-s + 9·81-s + 12·89-s − 12·101-s − 4·109-s + 12·112-s + 48·119-s + 10·121-s + 127-s + 131-s + ⋯
L(s)  = 1  + 1/2·4-s − 1.51·7-s − 9-s − 3/4·16-s − 2.91·17-s − 0.755·28-s − 1/2·36-s + 0.657·37-s + 1.87·41-s + 2.43·43-s + 3.50·47-s + 9/7·49-s − 3.12·59-s + 1.51·63-s − 7/8·64-s − 1.95·67-s − 1.45·68-s + 1.80·79-s + 81-s + 1.27·89-s − 1.19·101-s − 0.383·109-s + 1.13·112-s + 4.40·119-s + 0.909·121-s + 0.0887·127-s + 0.0873·131-s + ⋯

Functional equation

Λ(s)=(275625s/2ΓC(s)2L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 275625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}
Λ(s)=(275625s/2ΓC(s+1/2)2L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 275625 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 44
Conductor: 275625275625    =    3254723^{2} \cdot 5^{4} \cdot 7^{2}
Sign: 11
Analytic conductor: 17.574017.5740
Root analytic conductor: 2.047472.04747
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 00
Selberg data: (4, 275625, ( :1/2,1/2), 1)(4,\ 275625,\ (\ :1/2, 1/2),\ 1)

Particular Values

L(1)L(1) \approx 0.86615601790.8661560179
L(12)L(\frac12) \approx 0.86615601790.8661560179
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad3C2C_2 1+pT2 1 + p T^{2}
5 1 1
7C2C_2 1+4T+pT2 1 + 4 T + p T^{2}
good2C22C_2^2 1T2+p2T4 1 - T^{2} + p^{2} T^{4}
11C22C_2^2 110T2+p2T4 1 - 10 T^{2} + p^{2} T^{4}
13C2C_2 (1pT2)2 ( 1 - p T^{2} )^{2}
17C2C_2 (1+6T+pT2)2 ( 1 + 6 T + p T^{2} )^{2}
19C2C_2 (18T+pT2)(1+8T+pT2) ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} )
23C22C_2^2 134T2+p2T4 1 - 34 T^{2} + p^{2} T^{4}
29C22C_2^2 110T2+p2T4 1 - 10 T^{2} + p^{2} T^{4}
31C22C_2^2 150T2+p2T4 1 - 50 T^{2} + p^{2} T^{4}
37C2C_2 (12T+pT2)2 ( 1 - 2 T + p T^{2} )^{2}
41C2C_2 (16T+pT2)2 ( 1 - 6 T + p T^{2} )^{2}
43C2C_2 (18T+pT2)2 ( 1 - 8 T + p T^{2} )^{2}
47C2C_2 (112T+pT2)2 ( 1 - 12 T + p T^{2} )^{2}
53C2C_2 (1pT2)2 ( 1 - p T^{2} )^{2}
59C2C_2 (1+12T+pT2)2 ( 1 + 12 T + p T^{2} )^{2}
61C2C_2 (114T+pT2)(1+14T+pT2) ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} )
67C2C_2 (1+8T+pT2)2 ( 1 + 8 T + p T^{2} )^{2}
71C22C_2^2 1130T2+p2T4 1 - 130 T^{2} + p^{2} T^{4}
73C22C_2^2 198T2+p2T4 1 - 98 T^{2} + p^{2} T^{4}
79C2C_2 (18T+pT2)2 ( 1 - 8 T + p T^{2} )^{2}
83C2C_2 (1+pT2)2 ( 1 + p T^{2} )^{2}
89C2C_2 (16T+pT2)2 ( 1 - 6 T + p T^{2} )^{2}
97C22C_2^2 1146T2+p2T4 1 - 146 T^{2} + p^{2} T^{4}
show more
show less
   L(s)=p j=14(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−11.05728907308294597640692751467, −10.64505167473116839181775573867, −10.55601873144198600642825540133, −9.393858134678248784463624231204, −9.291608285219077657063013782677, −8.966822830681800343960945127234, −8.776884818319404234225133865568, −7.65404072485387587447613205576, −7.56293213253545126169148953859, −6.91856009216061670547587563037, −6.39309111447211168970554059232, −5.99747198042375773798681745579, −5.95496263296676107145589615451, −4.88773036380882085998920885317, −4.14485422861587002751360888280, −4.10825837911786170154677775303, −2.87131288274295921635037414432, −2.64352353327532264001546469447, −2.17070756404279439413224669342, −0.51127384343248679183538932567, 0.51127384343248679183538932567, 2.17070756404279439413224669342, 2.64352353327532264001546469447, 2.87131288274295921635037414432, 4.10825837911786170154677775303, 4.14485422861587002751360888280, 4.88773036380882085998920885317, 5.95496263296676107145589615451, 5.99747198042375773798681745579, 6.39309111447211168970554059232, 6.91856009216061670547587563037, 7.56293213253545126169148953859, 7.65404072485387587447613205576, 8.776884818319404234225133865568, 8.966822830681800343960945127234, 9.291608285219077657063013782677, 9.393858134678248784463624231204, 10.55601873144198600642825540133, 10.64505167473116839181775573867, 11.05728907308294597640692751467

Graph of the ZZ-function along the critical line