L(s) = 1 | + 2·2-s − 4-s − 8·8-s + 9-s − 8·11-s − 7·16-s + 2·18-s − 16·22-s − 4·29-s + 14·32-s − 36-s + 20·37-s − 8·43-s + 8·44-s − 7·49-s + 20·53-s − 8·58-s + 35·64-s − 24·67-s − 16·71-s − 8·72-s + 40·74-s + 81-s − 16·86-s + 64·88-s − 14·98-s − 8·99-s + ⋯ |
L(s) = 1 | + 1.41·2-s − 1/2·4-s − 2.82·8-s + 1/3·9-s − 2.41·11-s − 7/4·16-s + 0.471·18-s − 3.41·22-s − 0.742·29-s + 2.47·32-s − 1/6·36-s + 3.28·37-s − 1.21·43-s + 1.20·44-s − 49-s + 2.74·53-s − 1.05·58-s + 35/8·64-s − 2.93·67-s − 1.89·71-s − 0.942·72-s + 4.64·74-s + 1/9·81-s − 1.72·86-s + 6.82·88-s − 1.41·98-s − 0.804·99-s + ⋯ |
Λ(s)=(=(275625s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(275625s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
275625
= 32⋅54⋅72
|
Sign: |
1
|
Analytic conductor: |
17.5740 |
Root analytic conductor: |
2.04747 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 275625, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.352025311 |
L(21) |
≈ |
1.352025311 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C1×C1 | (1−T)(1+T) |
| 5 | | 1 |
| 7 | C2 | 1+pT2 |
good | 2 | C2 | (1−T+pT2)2 |
| 11 | C2 | (1+4T+pT2)2 |
| 13 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 17 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 19 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 23 | C2 | (1+pT2)2 |
| 29 | C2 | (1+2T+pT2)2 |
| 31 | C2 | (1+pT2)2 |
| 37 | C2 | (1−10T+pT2)2 |
| 41 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 43 | C2 | (1+4T+pT2)2 |
| 47 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 53 | C2 | (1−10T+pT2)2 |
| 59 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 61 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 67 | C2 | (1+12T+pT2)2 |
| 71 | C2 | (1+8T+pT2)2 |
| 73 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 79 | C2 | (1+pT2)2 |
| 83 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 89 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 97 | C2 | (1−2T+pT2)(1+2T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.843956595114680827452383410006, −8.461212909606671780489016897710, −7.78056789512660315702386216522, −7.68003844385765985083943135134, −6.92482379445403167319259433221, −6.00448844798074713207333092038, −5.86497653842965752491328535183, −5.44640444640032659769086760535, −4.79896242020124990959414772446, −4.52160444884874669934496061646, −4.11644977935212568952932430273, −3.13361812930802426100944548657, −3.01549784140686353642765162463, −2.20286953987450620546650146772, −0.53965130087831198857502799684,
0.53965130087831198857502799684, 2.20286953987450620546650146772, 3.01549784140686353642765162463, 3.13361812930802426100944548657, 4.11644977935212568952932430273, 4.52160444884874669934496061646, 4.79896242020124990959414772446, 5.44640444640032659769086760535, 5.86497653842965752491328535183, 6.00448844798074713207333092038, 6.92482379445403167319259433221, 7.68003844385765985083943135134, 7.78056789512660315702386216522, 8.461212909606671780489016897710, 8.843956595114680827452383410006