Properties

Label 4-525e2-1.1-c1e2-0-5
Degree $4$
Conductor $275625$
Sign $1$
Analytic cond. $17.5740$
Root an. cond. $2.04747$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s − 4·7-s − 3·9-s − 3·16-s + 12·17-s − 4·28-s − 3·36-s + 4·37-s − 12·41-s + 16·43-s − 24·47-s + 9·49-s + 24·59-s + 12·63-s − 7·64-s − 16·67-s + 12·68-s + 16·79-s + 9·81-s − 12·89-s + 12·101-s − 4·109-s + 12·112-s − 48·119-s + 10·121-s + 127-s + 131-s + ⋯
L(s)  = 1  + 1/2·4-s − 1.51·7-s − 9-s − 3/4·16-s + 2.91·17-s − 0.755·28-s − 1/2·36-s + 0.657·37-s − 1.87·41-s + 2.43·43-s − 3.50·47-s + 9/7·49-s + 3.12·59-s + 1.51·63-s − 7/8·64-s − 1.95·67-s + 1.45·68-s + 1.80·79-s + 81-s − 1.27·89-s + 1.19·101-s − 0.383·109-s + 1.13·112-s − 4.40·119-s + 0.909·121-s + 0.0887·127-s + 0.0873·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 275625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 275625 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(275625\)    =    \(3^{2} \cdot 5^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(17.5740\)
Root analytic conductor: \(2.04747\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 275625,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.361520203\)
\(L(\frac12)\) \(\approx\) \(1.361520203\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( 1 + p T^{2} \)
5 \( 1 \)
7$C_2$ \( 1 + 4 T + p T^{2} \)
good2$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
23$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
31$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
71$C_2^2$ \( 1 - 130 T^{2} + p^{2} T^{4} \)
73$C_2^2$ \( 1 - 98 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 + p T^{2} )^{2} \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2^2$ \( 1 - 146 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.45237090828949478474383705406, −10.47212270757445484131359350354, −10.04587377959947312920249244919, −9.977409902473546394359670122745, −9.225366481388965813566345209463, −9.133659500153687179359894363497, −8.162909626428848534701027055385, −8.111675385615524935608401307889, −7.47384913185477231515421335849, −6.76658042870903684333855826712, −6.69271271891388967550066955704, −5.87330229878917318829235879409, −5.71045363267218455269869724935, −5.17036163867387101142343237463, −4.36762313245250054001214211565, −3.46471743218789052078383852691, −3.25680015186414588701100659352, −2.79266163078902945878075225686, −1.88052529093017967831170943536, −0.68009710406838669263553681590, 0.68009710406838669263553681590, 1.88052529093017967831170943536, 2.79266163078902945878075225686, 3.25680015186414588701100659352, 3.46471743218789052078383852691, 4.36762313245250054001214211565, 5.17036163867387101142343237463, 5.71045363267218455269869724935, 5.87330229878917318829235879409, 6.69271271891388967550066955704, 6.76658042870903684333855826712, 7.47384913185477231515421335849, 8.111675385615524935608401307889, 8.162909626428848534701027055385, 9.133659500153687179359894363497, 9.225366481388965813566345209463, 9.977409902473546394359670122745, 10.04587377959947312920249244919, 10.47212270757445484131359350354, 11.45237090828949478474383705406

Graph of the $Z$-function along the critical line