L(s) = 1 | + 4-s − 4·7-s − 3·9-s − 3·16-s + 12·17-s − 4·28-s − 3·36-s + 4·37-s − 12·41-s + 16·43-s − 24·47-s + 9·49-s + 24·59-s + 12·63-s − 7·64-s − 16·67-s + 12·68-s + 16·79-s + 9·81-s − 12·89-s + 12·101-s − 4·109-s + 12·112-s − 48·119-s + 10·121-s + 127-s + 131-s + ⋯ |
L(s) = 1 | + 1/2·4-s − 1.51·7-s − 9-s − 3/4·16-s + 2.91·17-s − 0.755·28-s − 1/2·36-s + 0.657·37-s − 1.87·41-s + 2.43·43-s − 3.50·47-s + 9/7·49-s + 3.12·59-s + 1.51·63-s − 7/8·64-s − 1.95·67-s + 1.45·68-s + 1.80·79-s + 81-s − 1.27·89-s + 1.19·101-s − 0.383·109-s + 1.13·112-s − 4.40·119-s + 0.909·121-s + 0.0887·127-s + 0.0873·131-s + ⋯ |
Λ(s)=(=(275625s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(275625s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
275625
= 32⋅54⋅72
|
Sign: |
1
|
Analytic conductor: |
17.5740 |
Root analytic conductor: |
2.04747 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 275625, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.361520203 |
L(21) |
≈ |
1.361520203 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C2 | 1+pT2 |
| 5 | | 1 |
| 7 | C2 | 1+4T+pT2 |
good | 2 | C22 | 1−T2+p2T4 |
| 11 | C22 | 1−10T2+p2T4 |
| 13 | C2 | (1−pT2)2 |
| 17 | C2 | (1−6T+pT2)2 |
| 19 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 23 | C22 | 1−34T2+p2T4 |
| 29 | C22 | 1−10T2+p2T4 |
| 31 | C22 | 1−50T2+p2T4 |
| 37 | C2 | (1−2T+pT2)2 |
| 41 | C2 | (1+6T+pT2)2 |
| 43 | C2 | (1−8T+pT2)2 |
| 47 | C2 | (1+12T+pT2)2 |
| 53 | C2 | (1−pT2)2 |
| 59 | C2 | (1−12T+pT2)2 |
| 61 | C2 | (1−14T+pT2)(1+14T+pT2) |
| 67 | C2 | (1+8T+pT2)2 |
| 71 | C22 | 1−130T2+p2T4 |
| 73 | C22 | 1−98T2+p2T4 |
| 79 | C2 | (1−8T+pT2)2 |
| 83 | C2 | (1+pT2)2 |
| 89 | C2 | (1+6T+pT2)2 |
| 97 | C22 | 1−146T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.45237090828949478474383705406, −10.47212270757445484131359350354, −10.04587377959947312920249244919, −9.977409902473546394359670122745, −9.225366481388965813566345209463, −9.133659500153687179359894363497, −8.162909626428848534701027055385, −8.111675385615524935608401307889, −7.47384913185477231515421335849, −6.76658042870903684333855826712, −6.69271271891388967550066955704, −5.87330229878917318829235879409, −5.71045363267218455269869724935, −5.17036163867387101142343237463, −4.36762313245250054001214211565, −3.46471743218789052078383852691, −3.25680015186414588701100659352, −2.79266163078902945878075225686, −1.88052529093017967831170943536, −0.68009710406838669263553681590,
0.68009710406838669263553681590, 1.88052529093017967831170943536, 2.79266163078902945878075225686, 3.25680015186414588701100659352, 3.46471743218789052078383852691, 4.36762313245250054001214211565, 5.17036163867387101142343237463, 5.71045363267218455269869724935, 5.87330229878917318829235879409, 6.69271271891388967550066955704, 6.76658042870903684333855826712, 7.47384913185477231515421335849, 8.111675385615524935608401307889, 8.162909626428848534701027055385, 9.133659500153687179359894363497, 9.225366481388965813566345209463, 9.977409902473546394359670122745, 10.04587377959947312920249244919, 10.47212270757445484131359350354, 11.45237090828949478474383705406