L(s) = 1 | − 2-s − 6·3-s + 4-s + 6·6-s + 14·7-s − 9·8-s + 27·9-s − 22·11-s − 6·12-s + 22·13-s − 14·14-s − 47·16-s − 116·17-s − 27·18-s + 102·19-s − 84·21-s + 22·22-s − 260·23-s + 54·24-s − 22·26-s − 108·27-s + 14·28-s − 196·29-s + 150·31-s + 103·32-s + 132·33-s + 116·34-s + ⋯ |
L(s) = 1 | − 0.353·2-s − 1.15·3-s + 1/8·4-s + 0.408·6-s + 0.755·7-s − 0.397·8-s + 9-s − 0.603·11-s − 0.144·12-s + 0.469·13-s − 0.267·14-s − 0.734·16-s − 1.65·17-s − 0.353·18-s + 1.23·19-s − 0.872·21-s + 0.213·22-s − 2.35·23-s + 0.459·24-s − 0.165·26-s − 0.769·27-s + 0.0944·28-s − 1.25·29-s + 0.869·31-s + 0.568·32-s + 0.696·33-s + 0.585·34-s + ⋯ |
Λ(s)=(=(275625s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(275625s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
275625
= 32⋅54⋅72
|
Sign: |
1
|
Analytic conductor: |
959.512 |
Root analytic conductor: |
5.56560 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 275625, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C1 | (1+pT)2 |
| 5 | | 1 |
| 7 | C1 | (1−pT)2 |
good | 2 | D4 | 1+T+p3T3+p6T4 |
| 11 | D4 | 1+2pT+2718T2+2p4T3+p6T4 |
| 13 | D4 | 1−22T+4450T2−22p3T3+p6T4 |
| 17 | D4 | 1+116T+9030T2+116p3T3+p6T4 |
| 19 | D4 | 1−102T+13134T2−102p3T3+p6T4 |
| 23 | D4 | 1+260T+34734T2+260p3T3+p6T4 |
| 29 | D4 | 1+196T+20942T2+196p3T3+p6T4 |
| 31 | D4 | 1−150T+36542T2−150p3T3+p6T4 |
| 37 | D4 | 1−96T+82550T2−96p3T3+p6T4 |
| 41 | D4 | 1+176T−16914T2+176p3T3+p6T4 |
| 43 | D4 | 1−8pT+171958T2−8p4T3+p6T4 |
| 47 | D4 | 1+560T+248606T2+560p3T3+p6T4 |
| 53 | D4 | 1+326T+204138T2+326p3T3+p6T4 |
| 59 | D4 | 1+844T+474182T2+844p3T3+p6T4 |
| 61 | D4 | 1+204T+455006T2+204p3T3+p6T4 |
| 67 | D4 | 1−104T+537670T2−104p3T3+p6T4 |
| 71 | D4 | 1−1670T+1384382T2−1670p3T3+p6T4 |
| 73 | D4 | 1−386T+152218T2−386p3T3+p6T4 |
| 79 | D4 | 1+888T+1007454T2+888p3T3+p6T4 |
| 83 | D4 | 1+928T+600710T2+928p3T3+p6T4 |
| 89 | D4 | 1−588T+1495334T2−588p3T3+p6T4 |
| 97 | D4 | 1+522T+291282T2+522p3T3+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.22830229563661867924912411589, −9.866617179104076557473098780024, −9.292910589293167707581866849496, −9.151774616763100073637836451075, −8.130216543569479799823416786368, −8.117656687226005390987407264881, −7.65155649499516237211362880703, −6.84290374163458097002565157603, −6.58582852725826489533600907087, −6.09193953812086260274418914693, −5.56991007286448801804177232082, −5.15502211710477551068967189687, −4.40949664216371750983075889168, −4.28137017897688057816930304822, −3.39507048704496452027599025816, −2.46535011381250003962058324278, −1.92262791641916818510829055902, −1.22479267346348945102799469931, 0, 0,
1.22479267346348945102799469931, 1.92262791641916818510829055902, 2.46535011381250003962058324278, 3.39507048704496452027599025816, 4.28137017897688057816930304822, 4.40949664216371750983075889168, 5.15502211710477551068967189687, 5.56991007286448801804177232082, 6.09193953812086260274418914693, 6.58582852725826489533600907087, 6.84290374163458097002565157603, 7.65155649499516237211362880703, 8.117656687226005390987407264881, 8.130216543569479799823416786368, 9.151774616763100073637836451075, 9.292910589293167707581866849496, 9.866617179104076557473098780024, 10.22830229563661867924912411589