L(s) = 1 | − 3·2-s + 6·3-s − 5·4-s − 18·6-s + 14·7-s + 33·8-s + 27·9-s − 31·11-s − 30·12-s − 39·13-s − 42·14-s − 21·16-s + 79·17-s − 81·18-s − 56·19-s + 84·21-s + 93·22-s − 254·23-s + 198·24-s + 117·26-s + 108·27-s − 70·28-s − 62·29-s − 135·31-s − 87·32-s − 186·33-s − 237·34-s + ⋯ |
L(s) = 1 | − 1.06·2-s + 1.15·3-s − 5/8·4-s − 1.22·6-s + 0.755·7-s + 1.45·8-s + 9-s − 0.849·11-s − 0.721·12-s − 0.832·13-s − 0.801·14-s − 0.328·16-s + 1.12·17-s − 1.06·18-s − 0.676·19-s + 0.872·21-s + 0.901·22-s − 2.30·23-s + 1.68·24-s + 0.882·26-s + 0.769·27-s − 0.472·28-s − 0.397·29-s − 0.782·31-s − 0.480·32-s − 0.981·33-s − 1.19·34-s + ⋯ |
Λ(s)=(=(275625s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(275625s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
275625
= 32⋅54⋅72
|
Sign: |
1
|
Analytic conductor: |
959.512 |
Root analytic conductor: |
5.56560 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 275625, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C1 | (1−pT)2 |
| 5 | | 1 |
| 7 | C1 | (1−pT)2 |
good | 2 | C4 | 1+3T+7pT2+3p3T3+p6T4 |
| 11 | D4 | 1+31T+2796T2+31p3T3+p6T4 |
| 13 | D4 | 1+3pT+3546T2+3p4T3+p6T4 |
| 17 | D4 | 1−79T+8288T2−79p3T3+p6T4 |
| 19 | D4 | 1+56T+1174T2+56p3T3+p6T4 |
| 23 | D4 | 1+254T+38015T2+254p3T3+p6T4 |
| 29 | D4 | 1+62T+19751T2+62p3T3+p6T4 |
| 31 | D4 | 1+135T+63420T2+135p3T3+p6T4 |
| 37 | D4 | 1+113T+102964T2+113p3T3+p6T4 |
| 41 | D4 | 1−235T+143042T2−235p3T3+p6T4 |
| 43 | D4 | 1+804T+306321T2+804p3T3+p6T4 |
| 47 | D4 | 1+152T+180510T2+152p3T3+p6T4 |
| 53 | D4 | 1+149T+269640T2+149p3T3+p6T4 |
| 59 | D4 | 1+441T+273734T2+441p3T3+p6T4 |
| 61 | D4 | 1+223T+149646T2+223p3T3+p6T4 |
| 67 | D4 | 1+1157T+871890T2+1157p3T3+p6T4 |
| 71 | D4 | 1−619T+576906T2−619p3T3+p6T4 |
| 73 | D4 | 1+268T+763078T2+268p3T3+p6T4 |
| 79 | D4 | 1+427T+986572T2+427p3T3+p6T4 |
| 83 | D4 | 1+1211T+720720T2+1211p3T3+p6T4 |
| 89 | D4 | 1−466T+306170T2−466p3T3+p6T4 |
| 97 | D4 | 1+172T−273626T2+172p3T3+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.978844281186729085710753821351, −9.849708628900840625392888038927, −9.182752734382268522602132133826, −9.015677661701696983659479578508, −8.241889097431895984297069870114, −8.189074437725777677509591503270, −7.69531193756662675881230856221, −7.63069371584256306352029705758, −6.80038337320182259248395398509, −6.12807000959301484725777218404, −5.24431720393011742867523080898, −5.16679298048263652568632294577, −4.17748629582954838913062794466, −4.16619229371580336296790025746, −3.23530014965051729462661896334, −2.61924209101489875657644639319, −1.73211390683513546126124327273, −1.50634273801803250279664283532, 0, 0,
1.50634273801803250279664283532, 1.73211390683513546126124327273, 2.61924209101489875657644639319, 3.23530014965051729462661896334, 4.16619229371580336296790025746, 4.17748629582954838913062794466, 5.16679298048263652568632294577, 5.24431720393011742867523080898, 6.12807000959301484725777218404, 6.80038337320182259248395398509, 7.63069371584256306352029705758, 7.69531193756662675881230856221, 8.189074437725777677509591503270, 8.241889097431895984297069870114, 9.015677661701696983659479578508, 9.182752734382268522602132133826, 9.849708628900840625392888038927, 9.978844281186729085710753821351