L(s) = 1 | + 3·2-s − 6·3-s − 5·4-s − 18·6-s − 14·7-s − 33·8-s + 27·9-s − 31·11-s + 30·12-s + 39·13-s − 42·14-s − 21·16-s − 79·17-s + 81·18-s − 56·19-s + 84·21-s − 93·22-s + 254·23-s + 198·24-s + 117·26-s − 108·27-s + 70·28-s − 62·29-s − 135·31-s + 87·32-s + 186·33-s − 237·34-s + ⋯ |
L(s) = 1 | + 1.06·2-s − 1.15·3-s − 5/8·4-s − 1.22·6-s − 0.755·7-s − 1.45·8-s + 9-s − 0.849·11-s + 0.721·12-s + 0.832·13-s − 0.801·14-s − 0.328·16-s − 1.12·17-s + 1.06·18-s − 0.676·19-s + 0.872·21-s − 0.901·22-s + 2.30·23-s + 1.68·24-s + 0.882·26-s − 0.769·27-s + 0.472·28-s − 0.397·29-s − 0.782·31-s + 0.480·32-s + 0.981·33-s − 1.19·34-s + ⋯ |
Λ(s)=(=(275625s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(275625s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
275625
= 32⋅54⋅72
|
Sign: |
1
|
Analytic conductor: |
959.512 |
Root analytic conductor: |
5.56560 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 275625, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
1.425473876 |
L(21) |
≈ |
1.425473876 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C1 | (1+pT)2 |
| 5 | | 1 |
| 7 | C1 | (1+pT)2 |
good | 2 | C4 | 1−3T+7pT2−3p3T3+p6T4 |
| 11 | D4 | 1+31T+2796T2+31p3T3+p6T4 |
| 13 | D4 | 1−3pT+3546T2−3p4T3+p6T4 |
| 17 | D4 | 1+79T+8288T2+79p3T3+p6T4 |
| 19 | D4 | 1+56T+1174T2+56p3T3+p6T4 |
| 23 | D4 | 1−254T+38015T2−254p3T3+p6T4 |
| 29 | D4 | 1+62T+19751T2+62p3T3+p6T4 |
| 31 | D4 | 1+135T+63420T2+135p3T3+p6T4 |
| 37 | D4 | 1−113T+102964T2−113p3T3+p6T4 |
| 41 | D4 | 1−235T+143042T2−235p3T3+p6T4 |
| 43 | D4 | 1−804T+306321T2−804p3T3+p6T4 |
| 47 | D4 | 1−152T+180510T2−152p3T3+p6T4 |
| 53 | D4 | 1−149T+269640T2−149p3T3+p6T4 |
| 59 | D4 | 1+441T+273734T2+441p3T3+p6T4 |
| 61 | D4 | 1+223T+149646T2+223p3T3+p6T4 |
| 67 | D4 | 1−1157T+871890T2−1157p3T3+p6T4 |
| 71 | D4 | 1−619T+576906T2−619p3T3+p6T4 |
| 73 | D4 | 1−268T+763078T2−268p3T3+p6T4 |
| 79 | D4 | 1+427T+986572T2+427p3T3+p6T4 |
| 83 | D4 | 1−1211T+720720T2−1211p3T3+p6T4 |
| 89 | D4 | 1−466T+306170T2−466p3T3+p6T4 |
| 97 | D4 | 1−172T−273626T2−172p3T3+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.85919753065442622498907170085, −10.59333444576037829179880456064, −9.601977875832480089579576227904, −9.468960479219499458394271749213, −8.849056421123131864142375321339, −8.778351498589352675205054411990, −7.81572400732461855890984495501, −7.39551954694108854298745981874, −6.77388928272800678244653833131, −6.40980288269180802578694535687, −5.72902192319760416974702302077, −5.67587338633174292972238141469, −4.85052483572484563262538781795, −4.75123181023720967039259971988, −3.93060693162802408963263995972, −3.77827571140795938008556959803, −2.86327279723027258438942442193, −2.25968941286165932325369206806, −0.929427952112897476085075556694, −0.43840591368660462215669846199,
0.43840591368660462215669846199, 0.929427952112897476085075556694, 2.25968941286165932325369206806, 2.86327279723027258438942442193, 3.77827571140795938008556959803, 3.93060693162802408963263995972, 4.75123181023720967039259971988, 4.85052483572484563262538781795, 5.67587338633174292972238141469, 5.72902192319760416974702302077, 6.40980288269180802578694535687, 6.77388928272800678244653833131, 7.39551954694108854298745981874, 7.81572400732461855890984495501, 8.778351498589352675205054411990, 8.849056421123131864142375321339, 9.468960479219499458394271749213, 9.601977875832480089579576227904, 10.59333444576037829179880456064, 10.85919753065442622498907170085