Properties

Label 4-540800-1.1-c1e2-0-18
Degree $4$
Conductor $540800$
Sign $1$
Analytic cond. $34.4818$
Root an. cond. $2.42324$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·5-s + 4·7-s + 9-s + 2·13-s + 4·25-s − 12·35-s + 2·37-s − 3·45-s + 4·47-s − 49-s − 8·61-s + 4·63-s − 6·65-s + 16·67-s − 20·73-s + 8·79-s − 8·81-s + 24·83-s + 8·91-s + 8·97-s + 16·101-s + 2·117-s + 10·121-s + 3·125-s + 127-s + 131-s + 137-s + ⋯
L(s)  = 1  − 1.34·5-s + 1.51·7-s + 1/3·9-s + 0.554·13-s + 4/5·25-s − 2.02·35-s + 0.328·37-s − 0.447·45-s + 0.583·47-s − 1/7·49-s − 1.02·61-s + 0.503·63-s − 0.744·65-s + 1.95·67-s − 2.34·73-s + 0.900·79-s − 8/9·81-s + 2.63·83-s + 0.838·91-s + 0.812·97-s + 1.59·101-s + 0.184·117-s + 0.909·121-s + 0.268·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 540800 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 540800 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(540800\)    =    \(2^{7} \cdot 5^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(34.4818\)
Root analytic conductor: \(2.42324\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 540800,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.798599779\)
\(L(\frac12)\) \(\approx\) \(1.798599779\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_2$ \( 1 + 3 T + p T^{2} \)
13$C_2$ \( 1 - 2 T + p T^{2} \)
good3$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
7$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 - T + p T^{2} ) \)
11$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
19$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + 18 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
31$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
43$C_2^2$ \( 1 - 9 T^{2} + p^{2} T^{4} \)
47$C_2$$\times$$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
53$C_2^2$ \( 1 + 82 T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 - 38 T^{2} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 8 T + p T^{2} ) \)
67$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
71$C_2^2$ \( 1 + 55 T^{2} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
79$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
83$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 - 10 T + p T^{2} ) \)
89$C_2^2$ \( 1 - 102 T^{2} + p^{2} T^{4} \)
97$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.455818670319071853073892193518, −7.968590726590330501123767305785, −7.64606590933620344425663891374, −7.32469371722216245826150993062, −6.76630124393435907765378699325, −6.17938178595195748928406873146, −5.67339607138908642684889275430, −5.00183036684168281129084284042, −4.59037596784972644267108292819, −4.31690762898032664126534932318, −3.60133389423961568180874434594, −3.24884191626243486637931941464, −2.25550588426683540942422150082, −1.60847664258435852494871434923, −0.74067720772506239042240082538, 0.74067720772506239042240082538, 1.60847664258435852494871434923, 2.25550588426683540942422150082, 3.24884191626243486637931941464, 3.60133389423961568180874434594, 4.31690762898032664126534932318, 4.59037596784972644267108292819, 5.00183036684168281129084284042, 5.67339607138908642684889275430, 6.17938178595195748928406873146, 6.76630124393435907765378699325, 7.32469371722216245826150993062, 7.64606590933620344425663891374, 7.968590726590330501123767305785, 8.455818670319071853073892193518

Graph of the $Z$-function along the critical line