L(s) = 1 | − 3·5-s + 4·7-s + 9-s + 2·13-s + 4·25-s − 12·35-s + 2·37-s − 3·45-s + 4·47-s − 49-s − 8·61-s + 4·63-s − 6·65-s + 16·67-s − 20·73-s + 8·79-s − 8·81-s + 24·83-s + 8·91-s + 8·97-s + 16·101-s + 2·117-s + 10·121-s + 3·125-s + 127-s + 131-s + 137-s + ⋯ |
L(s) = 1 | − 1.34·5-s + 1.51·7-s + 1/3·9-s + 0.554·13-s + 4/5·25-s − 2.02·35-s + 0.328·37-s − 0.447·45-s + 0.583·47-s − 1/7·49-s − 1.02·61-s + 0.503·63-s − 0.744·65-s + 1.95·67-s − 2.34·73-s + 0.900·79-s − 8/9·81-s + 2.63·83-s + 0.838·91-s + 0.812·97-s + 1.59·101-s + 0.184·117-s + 0.909·121-s + 0.268·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯ |
Λ(s)=(=(540800s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(540800s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
540800
= 27⋅52⋅132
|
Sign: |
1
|
Analytic conductor: |
34.4818 |
Root analytic conductor: |
2.42324 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 540800, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.798599779 |
L(21) |
≈ |
1.798599779 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C2 | 1+3T+pT2 |
| 13 | C2 | 1−2T+pT2 |
good | 3 | C22 | 1−T2+p2T4 |
| 7 | C2×C2 | (1−3T+pT2)(1−T+pT2) |
| 11 | C22 | 1−10T2+p2T4 |
| 17 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 19 | C22 | 1+26T2+p2T4 |
| 23 | C22 | 1+18T2+p2T4 |
| 29 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 31 | C22 | 1−30T2+p2T4 |
| 37 | C2 | (1−T+pT2)2 |
| 41 | C22 | 1−2T2+p2T4 |
| 43 | C22 | 1−9T2+p2T4 |
| 47 | C2×C2 | (1−7T+pT2)(1+3T+pT2) |
| 53 | C22 | 1+82T2+p2T4 |
| 59 | C22 | 1−38T2+p2T4 |
| 61 | C2×C2 | (1+pT2)(1+8T+pT2) |
| 67 | C2×C2 | (1−12T+pT2)(1−4T+pT2) |
| 71 | C22 | 1+55T2+p2T4 |
| 73 | C2×C2 | (1+6T+pT2)(1+14T+pT2) |
| 79 | C2×C2 | (1−14T+pT2)(1+6T+pT2) |
| 83 | C2×C2 | (1−14T+pT2)(1−10T+pT2) |
| 89 | C22 | 1−102T2+p2T4 |
| 97 | C2×C2 | (1−8T+pT2)(1+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.455818670319071853073892193518, −7.968590726590330501123767305785, −7.64606590933620344425663891374, −7.32469371722216245826150993062, −6.76630124393435907765378699325, −6.17938178595195748928406873146, −5.67339607138908642684889275430, −5.00183036684168281129084284042, −4.59037596784972644267108292819, −4.31690762898032664126534932318, −3.60133389423961568180874434594, −3.24884191626243486637931941464, −2.25550588426683540942422150082, −1.60847664258435852494871434923, −0.74067720772506239042240082538,
0.74067720772506239042240082538, 1.60847664258435852494871434923, 2.25550588426683540942422150082, 3.24884191626243486637931941464, 3.60133389423961568180874434594, 4.31690762898032664126534932318, 4.59037596784972644267108292819, 5.00183036684168281129084284042, 5.67339607138908642684889275430, 6.17938178595195748928406873146, 6.76630124393435907765378699325, 7.32469371722216245826150993062, 7.64606590933620344425663891374, 7.968590726590330501123767305785, 8.455818670319071853073892193518