L(s) = 1 | − 2-s + 4-s − 5-s + 4·7-s − 8-s + 9-s + 10-s + 6·13-s − 4·14-s + 16-s − 18-s − 20-s − 4·25-s − 6·26-s + 4·28-s + 8·29-s − 32-s − 4·35-s + 36-s − 10·37-s + 40-s − 45-s + 4·47-s + 7·49-s + 4·50-s + 6·52-s − 4·56-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s − 0.447·5-s + 1.51·7-s − 0.353·8-s + 1/3·9-s + 0.316·10-s + 1.66·13-s − 1.06·14-s + 1/4·16-s − 0.235·18-s − 0.223·20-s − 4/5·25-s − 1.17·26-s + 0.755·28-s + 1.48·29-s − 0.176·32-s − 0.676·35-s + 1/6·36-s − 1.64·37-s + 0.158·40-s − 0.149·45-s + 0.583·47-s + 49-s + 0.565·50-s + 0.832·52-s − 0.534·56-s + ⋯ |
Λ(s)=(=(540800s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(540800s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
540800
= 27⋅52⋅132
|
Sign: |
1
|
Analytic conductor: |
34.4818 |
Root analytic conductor: |
2.42324 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 540800, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.783577051 |
L(21) |
≈ |
1.783577051 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | 1+T |
| 5 | C2 | 1+T+pT2 |
| 13 | C2 | 1−6T+pT2 |
good | 3 | C22 | 1−T2+p2T4 |
| 7 | C2 | (1−5T+pT2)(1+T+pT2) |
| 11 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 17 | C2 | (1−5T+pT2)(1+5T+pT2) |
| 19 | C22 | 1−30T2+p2T4 |
| 23 | C22 | 1−38T2+p2T4 |
| 29 | C2×C2 | (1−8T+pT2)(1+pT2) |
| 31 | C22 | 1+18T2+p2T4 |
| 37 | C2 | (1+5T+pT2)2 |
| 41 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 43 | C22 | 1+39T2+p2T4 |
| 47 | C2×C2 | (1−9T+pT2)(1+5T+pT2) |
| 53 | C22 | 1−22T2+p2T4 |
| 59 | C22 | 1+34T2+p2T4 |
| 61 | C2×C2 | (1−8T+pT2)(1+pT2) |
| 67 | C2 | (1−4T+pT2)2 |
| 71 | C22 | 1+47T2+p2T4 |
| 73 | C2×C2 | (1−14T+pT2)(1−10T+pT2) |
| 79 | C2×C2 | (1+2T+pT2)(1+10T+pT2) |
| 83 | C2×C2 | (1−18T+pT2)(1+6T+pT2) |
| 89 | C22 | 1+82T2+p2T4 |
| 97 | C2 | (1+12T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.441478766003148556623796299623, −8.144095561645493793928142696150, −7.79553307742508526649912506501, −7.15207845955938326404734101537, −6.77144560653655953790652734450, −6.33155021821359964214935134347, −5.66369001367489491921436286434, −5.24767560053836964503588703269, −4.72221612142743047282768708968, −3.97326277707734270004818295514, −3.79580057738805113963063133049, −2.95435702019764121095310342586, −2.10228754368625768564730352600, −1.53550791444121486048744677720, −0.856906510162455468474606832055,
0.856906510162455468474606832055, 1.53550791444121486048744677720, 2.10228754368625768564730352600, 2.95435702019764121095310342586, 3.79580057738805113963063133049, 3.97326277707734270004818295514, 4.72221612142743047282768708968, 5.24767560053836964503588703269, 5.66369001367489491921436286434, 6.33155021821359964214935134347, 6.77144560653655953790652734450, 7.15207845955938326404734101537, 7.79553307742508526649912506501, 8.144095561645493793928142696150, 8.441478766003148556623796299623