Properties

Label 4-540800-1.1-c1e2-0-24
Degree $4$
Conductor $540800$
Sign $1$
Analytic cond. $34.4818$
Root an. cond. $2.42324$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 5-s + 4·7-s − 8-s + 9-s + 10-s + 6·13-s − 4·14-s + 16-s − 18-s − 20-s − 4·25-s − 6·26-s + 4·28-s + 8·29-s − 32-s − 4·35-s + 36-s − 10·37-s + 40-s − 45-s + 4·47-s + 7·49-s + 4·50-s + 6·52-s − 4·56-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.447·5-s + 1.51·7-s − 0.353·8-s + 1/3·9-s + 0.316·10-s + 1.66·13-s − 1.06·14-s + 1/4·16-s − 0.235·18-s − 0.223·20-s − 4/5·25-s − 1.17·26-s + 0.755·28-s + 1.48·29-s − 0.176·32-s − 0.676·35-s + 1/6·36-s − 1.64·37-s + 0.158·40-s − 0.149·45-s + 0.583·47-s + 49-s + 0.565·50-s + 0.832·52-s − 0.534·56-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 540800 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 540800 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(540800\)    =    \(2^{7} \cdot 5^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(34.4818\)
Root analytic conductor: \(2.42324\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 540800,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.783577051\)
\(L(\frac12)\) \(\approx\) \(1.783577051\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 + T \)
5$C_2$ \( 1 + T + p T^{2} \)
13$C_2$ \( 1 - 6 T + p T^{2} \)
good3$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
7$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + T + p T^{2} ) \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
19$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - 38 T^{2} + p^{2} T^{4} \)
29$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \)
31$C_2^2$ \( 1 + 18 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2^2$ \( 1 + 39 T^{2} + p^{2} T^{4} \)
47$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
53$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
71$C_2^2$ \( 1 + 47 T^{2} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 - 10 T + p T^{2} ) \)
79$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
83$C_2$$\times$$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
89$C_2^2$ \( 1 + 82 T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.441478766003148556623796299623, −8.144095561645493793928142696150, −7.79553307742508526649912506501, −7.15207845955938326404734101537, −6.77144560653655953790652734450, −6.33155021821359964214935134347, −5.66369001367489491921436286434, −5.24767560053836964503588703269, −4.72221612142743047282768708968, −3.97326277707734270004818295514, −3.79580057738805113963063133049, −2.95435702019764121095310342586, −2.10228754368625768564730352600, −1.53550791444121486048744677720, −0.856906510162455468474606832055, 0.856906510162455468474606832055, 1.53550791444121486048744677720, 2.10228754368625768564730352600, 2.95435702019764121095310342586, 3.79580057738805113963063133049, 3.97326277707734270004818295514, 4.72221612142743047282768708968, 5.24767560053836964503588703269, 5.66369001367489491921436286434, 6.33155021821359964214935134347, 6.77144560653655953790652734450, 7.15207845955938326404734101537, 7.79553307742508526649912506501, 8.144095561645493793928142696150, 8.441478766003148556623796299623

Graph of the $Z$-function along the critical line