L(s) = 1 | + 2·5-s + 2·9-s + 2·13-s + 4·17-s + 3·25-s − 4·29-s − 4·37-s + 4·41-s + 4·45-s + 2·49-s + 12·53-s − 4·61-s + 4·65-s + 4·73-s − 5·81-s + 8·85-s + 4·89-s − 12·97-s + 12·101-s + 12·109-s − 12·113-s + 4·117-s + 18·121-s + 4·125-s + 127-s + 131-s + 137-s + ⋯ |
L(s) = 1 | + 0.894·5-s + 2/3·9-s + 0.554·13-s + 0.970·17-s + 3/5·25-s − 0.742·29-s − 0.657·37-s + 0.624·41-s + 0.596·45-s + 2/7·49-s + 1.64·53-s − 0.512·61-s + 0.496·65-s + 0.468·73-s − 5/9·81-s + 0.867·85-s + 0.423·89-s − 1.21·97-s + 1.19·101-s + 1.14·109-s − 1.12·113-s + 0.369·117-s + 1.63·121-s + 0.357·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯ |
Λ(s)=(=(540800s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(540800s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
540800
= 27⋅52⋅132
|
Sign: |
1
|
Analytic conductor: |
34.4818 |
Root analytic conductor: |
2.42324 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 540800, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.695035714 |
L(21) |
≈ |
2.695035714 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C1 | (1−T)2 |
| 13 | C1 | (1−T)2 |
good | 3 | C22 | 1−2T2+p2T4 |
| 7 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 11 | C22 | 1−18T2+p2T4 |
| 17 | C2 | (1−2T+pT2)2 |
| 19 | C22 | 1−2T2+p2T4 |
| 23 | C22 | 1+6T2+p2T4 |
| 29 | C2×C2 | (1−6T+pT2)(1+10T+pT2) |
| 31 | C22 | 1−42T2+p2T4 |
| 37 | C2 | (1+2T+pT2)2 |
| 41 | C2×C2 | (1−10T+pT2)(1+6T+pT2) |
| 43 | C22 | 1−18T2+p2T4 |
| 47 | C22 | 1+14T2+p2T4 |
| 53 | C2 | (1−6T+pT2)2 |
| 59 | C22 | 1+14T2+p2T4 |
| 61 | C2×C2 | (1−6T+pT2)(1+10T+pT2) |
| 67 | C2 | (1−16T+pT2)(1+16T+pT2) |
| 71 | C22 | 1+70T2+p2T4 |
| 73 | C2 | (1−2T+pT2)2 |
| 79 | C22 | 1−2T2+p2T4 |
| 83 | C22 | 1+70T2+p2T4 |
| 89 | C2×C2 | (1−10T+pT2)(1+6T+pT2) |
| 97 | C2×C2 | (1−2T+pT2)(1+14T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.546465749511268910415782865259, −7.987109424737057245307656397071, −7.53125199949556523939117458653, −7.09717057872848487510621024148, −6.68862159372961218064790446970, −6.08902705980528534510708629881, −5.67575443421577017654436013888, −5.37529001107628665578409038673, −4.71703251013746342009376808605, −4.13991613053845340278766409570, −3.60795635925484158023154455185, −3.03540755191807680960141033038, −2.25957846055533507593722255797, −1.65967151690953797211524541958, −0.919009355606882619009403181064,
0.919009355606882619009403181064, 1.65967151690953797211524541958, 2.25957846055533507593722255797, 3.03540755191807680960141033038, 3.60795635925484158023154455185, 4.13991613053845340278766409570, 4.71703251013746342009376808605, 5.37529001107628665578409038673, 5.67575443421577017654436013888, 6.08902705980528534510708629881, 6.68862159372961218064790446970, 7.09717057872848487510621024148, 7.53125199949556523939117458653, 7.987109424737057245307656397071, 8.546465749511268910415782865259