L(s) = 1 | + 2·5-s − 6·9-s − 2·17-s + 5·25-s + 10·29-s + 2·37-s − 10·41-s − 12·45-s − 14·49-s − 14·53-s + 10·61-s + 6·73-s + 27·81-s − 4·85-s + 20·89-s + 36·97-s + 2·101-s + 12·109-s + 14·113-s − 22·121-s + 22·125-s + 127-s + 131-s + 137-s + 139-s + 20·145-s + 149-s + ⋯ |
L(s) = 1 | + 0.894·5-s − 2·9-s − 0.485·17-s + 25-s + 1.85·29-s + 0.328·37-s − 1.56·41-s − 1.78·45-s − 2·49-s − 1.92·53-s + 1.28·61-s + 0.702·73-s + 3·81-s − 0.433·85-s + 2.11·89-s + 3.65·97-s + 0.199·101-s + 1.14·109-s + 1.31·113-s − 2·121-s + 1.96·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 1.66·145-s + 0.0819·149-s + ⋯ |
Λ(s)=(=(29246464s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(29246464s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
29246464
= 210⋅134
|
Sign: |
1
|
Analytic conductor: |
1864.77 |
Root analytic conductor: |
6.57138 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 29246464, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.115441790 |
L(21) |
≈ |
2.115441790 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 13 | | 1 |
good | 3 | C2 | (1+pT2)2 |
| 5 | C22 | 1−2T−T2−2pT3+p2T4 |
| 7 | C2 | (1+pT2)2 |
| 11 | C2 | (1+pT2)2 |
| 17 | C22 | 1+2T−13T2+2pT3+p2T4 |
| 19 | C2 | (1+pT2)2 |
| 23 | C2 | (1+pT2)2 |
| 29 | C22 | 1−10T+71T2−10pT3+p2T4 |
| 31 | C2 | (1+pT2)2 |
| 37 | C22 | 1−2T−33T2−2pT3+p2T4 |
| 41 | C22 | 1+10T+59T2+10pT3+p2T4 |
| 43 | C2 | (1+pT2)2 |
| 47 | C2 | (1+pT2)2 |
| 53 | C22 | 1+14T+143T2+14pT3+p2T4 |
| 59 | C2 | (1+pT2)2 |
| 61 | C22 | 1−10T+39T2−10pT3+p2T4 |
| 67 | C2 | (1+pT2)2 |
| 71 | C2 | (1+pT2)2 |
| 73 | C22 | 1−6T−37T2−6pT3+p2T4 |
| 79 | C2 | (1+pT2)2 |
| 83 | C2 | (1+pT2)2 |
| 89 | C2 | (1−10T+pT2)2 |
| 97 | C2 | (1−18T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.339404407806784979805063868463, −8.259940276924542474205691752400, −7.56251640150692743131899460682, −7.44269096659002166816521247633, −6.65470608501995748967457375573, −6.39600320238416325869614619073, −6.24545166216826244940788587369, −6.08506653508983395876665948111, −5.34041642192029349053559932620, −5.06024215683950327731809265843, −4.87616598719280955289602771171, −4.55691729694495304277263072565, −3.66054072176450290699381826535, −3.41617768225560963040881789265, −2.93410897743996099493501531590, −2.74152690375811162388719710257, −1.98012986105323017224554684664, −1.93205456336423180723752762190, −0.969544949121715982708019921159, −0.42824352894671353067376791343,
0.42824352894671353067376791343, 0.969544949121715982708019921159, 1.93205456336423180723752762190, 1.98012986105323017224554684664, 2.74152690375811162388719710257, 2.93410897743996099493501531590, 3.41617768225560963040881789265, 3.66054072176450290699381826535, 4.55691729694495304277263072565, 4.87616598719280955289602771171, 5.06024215683950327731809265843, 5.34041642192029349053559932620, 6.08506653508983395876665948111, 6.24545166216826244940788587369, 6.39600320238416325869614619073, 6.65470608501995748967457375573, 7.44269096659002166816521247633, 7.56251640150692743131899460682, 8.259940276924542474205691752400, 8.339404407806784979805063868463