L(s) = 1 | − 3·3-s + 4-s − 2·5-s + 7-s + 6·9-s − 3·12-s + 6·15-s + 16-s − 6·17-s − 2·20-s − 3·21-s − 7·25-s − 9·27-s + 28-s − 2·35-s + 6·36-s + 6·37-s − 10·43-s − 12·45-s + 26·47-s − 3·48-s − 6·49-s + 18·51-s − 20·59-s + 6·60-s + 6·63-s + 64-s + ⋯ |
L(s) = 1 | − 1.73·3-s + 1/2·4-s − 0.894·5-s + 0.377·7-s + 2·9-s − 0.866·12-s + 1.54·15-s + 1/4·16-s − 1.45·17-s − 0.447·20-s − 0.654·21-s − 7/5·25-s − 1.73·27-s + 0.188·28-s − 0.338·35-s + 36-s + 0.986·37-s − 1.52·43-s − 1.78·45-s + 3.79·47-s − 0.433·48-s − 6/7·49-s + 2.52·51-s − 2.60·59-s + 0.774·60-s + 0.755·63-s + 1/8·64-s + ⋯ |
Λ(s)=(=(298116s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(298116s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
298116
= 22⋅32⋅72⋅132
|
Sign: |
1
|
Analytic conductor: |
19.0081 |
Root analytic conductor: |
2.08802 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 298116, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.5890106213 |
L(21) |
≈ |
0.5890106213 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1×C1 | (1−T)(1+T) |
| 3 | C2 | 1+pT+pT2 |
| 7 | C2 | 1−T+pT2 |
| 13 | C1×C1 | (1−T)(1+T) |
good | 5 | C2 | (1+T+pT2)2 |
| 11 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 17 | C2 | (1+3T+pT2)2 |
| 19 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 23 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 29 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 31 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 37 | C2 | (1−3T+pT2)2 |
| 41 | C2 | (1+pT2)2 |
| 43 | C2 | (1+5T+pT2)2 |
| 47 | C2 | (1−13T+pT2)2 |
| 53 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 59 | C2 | (1+10T+pT2)2 |
| 61 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 67 | C2 | (1+2T+pT2)2 |
| 71 | C2 | (1−5T+pT2)(1+5T+pT2) |
| 73 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 79 | C2 | (1+4T+pT2)2 |
| 83 | C2 | (1+pT2)2 |
| 89 | C2 | (1−6T+pT2)2 |
| 97 | C2 | (1−14T+pT2)(1+14T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.905235966993525833388868947156, −8.225552760361780021957840571261, −7.62508756975103450239324980184, −7.45985560667588965978165906144, −6.92076425331888408807137767822, −6.38286220020503058850747043516, −5.88908450915949561478136129218, −5.73681320363144770957728323698, −4.71843544103535120742978284678, −4.61153453491182141362175201622, −4.05080151028369257637143221969, −3.36991235720395449589306296865, −2.34027315669446164505659313213, −1.64016380827058072854636802791, −0.49679880081187161703829014750,
0.49679880081187161703829014750, 1.64016380827058072854636802791, 2.34027315669446164505659313213, 3.36991235720395449589306296865, 4.05080151028369257637143221969, 4.61153453491182141362175201622, 4.71843544103535120742978284678, 5.73681320363144770957728323698, 5.88908450915949561478136129218, 6.38286220020503058850747043516, 6.92076425331888408807137767822, 7.45985560667588965978165906144, 7.62508756975103450239324980184, 8.225552760361780021957840571261, 8.905235966993525833388868947156