Properties

Label 4-588e2-1.1-c1e2-0-21
Degree $4$
Conductor $345744$
Sign $-1$
Analytic cond. $22.0449$
Root an. cond. $2.16684$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 2·4-s − 3·9-s − 4·16-s + 6·18-s + 8·25-s − 14·29-s + 8·32-s − 6·36-s − 16·50-s + 10·53-s + 28·58-s − 8·64-s + 9·81-s + 16·100-s − 20·106-s − 2·113-s − 28·116-s + 127-s + 131-s + 137-s + 139-s + 12·144-s + 149-s + 151-s + 157-s − 18·162-s + ⋯
L(s)  = 1  − 1.41·2-s + 4-s − 9-s − 16-s + 1.41·18-s + 8/5·25-s − 2.59·29-s + 1.41·32-s − 36-s − 2.26·50-s + 1.37·53-s + 3.67·58-s − 64-s + 81-s + 8/5·100-s − 1.94·106-s − 0.188·113-s − 2.59·116-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 144-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s − 1.41·162-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 345744 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 345744 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(345744\)    =    \(2^{4} \cdot 3^{2} \cdot 7^{4}\)
Sign: $-1$
Analytic conductor: \(22.0449\)
Root analytic conductor: \(2.16684\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 345744,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p T + p T^{2} \)
3$C_2$ \( 1 + p T^{2} \)
7 \( 1 \)
good5$C_2^2$ \( 1 - 8 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
17$C_2^2$ \( 1 + 16 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 + p T^{2} )^{2} \)
23$C_2^2$ \( 1 + p^{2} T^{4} \)
29$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
41$C_2^2$ \( 1 - 80 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
67$C_2$ \( ( 1 - p T^{2} )^{2} \)
71$C_2^2$ \( 1 + p^{2} T^{4} \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
79$C_2$ \( ( 1 - p T^{2} )^{2} \)
83$C_2$ \( ( 1 + p T^{2} )^{2} \)
89$C_2^2$ \( 1 + 160 T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 + 18 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.675283624900062511911811378656, −8.165842182931156078591588403838, −7.56253085249857986653649458051, −7.43401045105870059031051173050, −6.73681136581834265637925026910, −6.39296396190320632860668721558, −5.59206924634252637463300387111, −5.35483700669784098380769784887, −4.64926701107503784437807501566, −3.94848150715579718577789265617, −3.32917196730094299212080403177, −2.57865934666678914372372469635, −2.00275142514673925542798845843, −1.07413156948196004775276684427, 0, 1.07413156948196004775276684427, 2.00275142514673925542798845843, 2.57865934666678914372372469635, 3.32917196730094299212080403177, 3.94848150715579718577789265617, 4.64926701107503784437807501566, 5.35483700669784098380769784887, 5.59206924634252637463300387111, 6.39296396190320632860668721558, 6.73681136581834265637925026910, 7.43401045105870059031051173050, 7.56253085249857986653649458051, 8.165842182931156078591588403838, 8.675283624900062511911811378656

Graph of the $Z$-function along the critical line