L(s) = 1 | − 2·2-s + 2·4-s − 3·9-s − 4·16-s + 6·18-s + 8·25-s − 14·29-s + 8·32-s − 6·36-s − 16·50-s + 10·53-s + 28·58-s − 8·64-s + 9·81-s + 16·100-s − 20·106-s − 2·113-s − 28·116-s + 127-s + 131-s + 137-s + 139-s + 12·144-s + 149-s + 151-s + 157-s − 18·162-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 4-s − 9-s − 16-s + 1.41·18-s + 8/5·25-s − 2.59·29-s + 1.41·32-s − 36-s − 2.26·50-s + 1.37·53-s + 3.67·58-s − 64-s + 81-s + 8/5·100-s − 1.94·106-s − 0.188·113-s − 2.59·116-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 144-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s − 1.41·162-s + ⋯ |
Λ(s)=(=(345744s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(345744s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
345744
= 24⋅32⋅74
|
Sign: |
−1
|
Analytic conductor: |
22.0449 |
Root analytic conductor: |
2.16684 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 345744, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+pT+pT2 |
| 3 | C2 | 1+pT2 |
| 7 | | 1 |
good | 5 | C22 | 1−8T2+p2T4 |
| 11 | C22 | 1+p2T4 |
| 13 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 17 | C22 | 1+16T2+p2T4 |
| 19 | C2 | (1+pT2)2 |
| 23 | C22 | 1+p2T4 |
| 29 | C2 | (1+4T+pT2)(1+10T+pT2) |
| 31 | C2 | (1+pT2)2 |
| 37 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 41 | C22 | 1−80T2+p2T4 |
| 43 | C2 | (1+pT2)2 |
| 47 | C2 | (1+pT2)2 |
| 53 | C2 | (1−14T+pT2)(1+4T+pT2) |
| 59 | C2 | (1+pT2)2 |
| 61 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 67 | C2 | (1−pT2)2 |
| 71 | C22 | 1+p2T4 |
| 73 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 79 | C2 | (1−pT2)2 |
| 83 | C2 | (1+pT2)2 |
| 89 | C22 | 1+160T2+p2T4 |
| 97 | C2 | (1−18T+pT2)(1+18T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.675283624900062511911811378656, −8.165842182931156078591588403838, −7.56253085249857986653649458051, −7.43401045105870059031051173050, −6.73681136581834265637925026910, −6.39296396190320632860668721558, −5.59206924634252637463300387111, −5.35483700669784098380769784887, −4.64926701107503784437807501566, −3.94848150715579718577789265617, −3.32917196730094299212080403177, −2.57865934666678914372372469635, −2.00275142514673925542798845843, −1.07413156948196004775276684427, 0,
1.07413156948196004775276684427, 2.00275142514673925542798845843, 2.57865934666678914372372469635, 3.32917196730094299212080403177, 3.94848150715579718577789265617, 4.64926701107503784437807501566, 5.35483700669784098380769784887, 5.59206924634252637463300387111, 6.39296396190320632860668721558, 6.73681136581834265637925026910, 7.43401045105870059031051173050, 7.56253085249857986653649458051, 8.165842182931156078591588403838, 8.675283624900062511911811378656