L(s) = 1 | + 3-s + 2·5-s − 2·11-s + 8·13-s + 2·15-s + 6·17-s + 8·19-s + 6·23-s + 5·25-s − 27-s − 20·29-s + 4·31-s − 2·33-s − 6·37-s + 8·39-s + 12·41-s + 8·43-s + 8·47-s + 6·51-s − 2·53-s − 4·55-s + 8·57-s − 4·59-s − 8·61-s + 16·65-s + 8·67-s + 6·69-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 0.894·5-s − 0.603·11-s + 2.21·13-s + 0.516·15-s + 1.45·17-s + 1.83·19-s + 1.25·23-s + 25-s − 0.192·27-s − 3.71·29-s + 0.718·31-s − 0.348·33-s − 0.986·37-s + 1.28·39-s + 1.87·41-s + 1.21·43-s + 1.16·47-s + 0.840·51-s − 0.274·53-s − 0.539·55-s + 1.05·57-s − 0.520·59-s − 1.02·61-s + 1.98·65-s + 0.977·67-s + 0.722·69-s + ⋯ |
Λ(s)=(=(345744s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(345744s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
345744
= 24⋅32⋅74
|
Sign: |
1
|
Analytic conductor: |
22.0449 |
Root analytic conductor: |
2.16684 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 345744, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
3.278665351 |
L(21) |
≈ |
3.278665351 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | 1−T+T2 |
| 7 | | 1 |
good | 5 | C22 | 1−2T−T2−2pT3+p2T4 |
| 11 | C22 | 1+2T−7T2+2pT3+p2T4 |
| 13 | C2 | (1−4T+pT2)2 |
| 17 | C22 | 1−6T+19T2−6pT3+p2T4 |
| 19 | C2 | (1−7T+pT2)(1−T+pT2) |
| 23 | C22 | 1−6T+13T2−6pT3+p2T4 |
| 29 | C2 | (1+10T+pT2)2 |
| 31 | C2 | (1−11T+pT2)(1+7T+pT2) |
| 37 | C22 | 1+6T−T2+6pT3+p2T4 |
| 41 | C2 | (1−6T+pT2)2 |
| 43 | C2 | (1−4T+pT2)2 |
| 47 | C22 | 1−8T+17T2−8pT3+p2T4 |
| 53 | C22 | 1+2T−49T2+2pT3+p2T4 |
| 59 | C22 | 1+4T−43T2+4pT3+p2T4 |
| 61 | C22 | 1+8T+3T2+8pT3+p2T4 |
| 67 | C22 | 1−8T−3T2−8pT3+p2T4 |
| 71 | C2 | (1+10T+pT2)2 |
| 73 | C22 | 1−4T−57T2−4pT3+p2T4 |
| 79 | C2 | (1−13T+pT2)(1+17T+pT2) |
| 83 | C2 | (1+12T+pT2)2 |
| 89 | C22 | 1+14T+107T2+14pT3+p2T4 |
| 97 | C2 | (1+4T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.73965459330473160920261018699, −10.72778583873254232817321505124, −9.731319955720249993534157848566, −9.688946276586426160804765139668, −9.142962783455452026301481432854, −8.835877260878964498105470781262, −8.412426757454182326040029176675, −7.63984826694279960957230548952, −7.45629129092727535273265018336, −7.14265581430412680312797508121, −6.11892232742314159672942746422, −5.85860392646274529244502887464, −5.47156165595483659599096975733, −5.18891765822095017483420416119, −4.01716907375447724638111147930, −3.78106439838390656310252233410, −2.91728336039430706781360995339, −2.82157880809136794235737109534, −1.48454647706044124862202797041, −1.23553727931513015429673319306,
1.23553727931513015429673319306, 1.48454647706044124862202797041, 2.82157880809136794235737109534, 2.91728336039430706781360995339, 3.78106439838390656310252233410, 4.01716907375447724638111147930, 5.18891765822095017483420416119, 5.47156165595483659599096975733, 5.85860392646274529244502887464, 6.11892232742314159672942746422, 7.14265581430412680312797508121, 7.45629129092727535273265018336, 7.63984826694279960957230548952, 8.412426757454182326040029176675, 8.835877260878964498105470781262, 9.142962783455452026301481432854, 9.688946276586426160804765139668, 9.731319955720249993534157848566, 10.72778583873254232817321505124, 10.73965459330473160920261018699