L(s) = 1 | + 3-s − 2·9-s + 4·13-s − 2·19-s − 25-s − 5·27-s − 14·31-s − 2·37-s + 4·39-s − 8·43-s − 2·57-s − 2·61-s − 14·67-s − 2·73-s − 75-s − 26·79-s + 81-s − 14·93-s − 20·97-s + 22·103-s − 2·109-s − 2·111-s − 8·117-s − 13·121-s + 127-s − 8·129-s + 131-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 2/3·9-s + 1.10·13-s − 0.458·19-s − 1/5·25-s − 0.962·27-s − 2.51·31-s − 0.328·37-s + 0.640·39-s − 1.21·43-s − 0.264·57-s − 0.256·61-s − 1.71·67-s − 0.234·73-s − 0.115·75-s − 2.92·79-s + 1/9·81-s − 1.45·93-s − 2.03·97-s + 2.16·103-s − 0.191·109-s − 0.189·111-s − 0.739·117-s − 1.18·121-s + 0.0887·127-s − 0.704·129-s + 0.0873·131-s + ⋯ |
Λ(s)=(=(345744s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(345744s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
345744
= 24⋅32⋅74
|
Sign: |
−1
|
Analytic conductor: |
22.0449 |
Root analytic conductor: |
2.16684 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 345744, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | 1−T+pT2 |
| 7 | | 1 |
good | 5 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 11 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 13 | C2 | (1−2T+pT2)2 |
| 17 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 19 | C2 | (1+T+pT2)2 |
| 23 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 29 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 31 | C2 | (1+7T+pT2)2 |
| 37 | C2 | (1+T+pT2)2 |
| 41 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 43 | C2 | (1+4T+pT2)2 |
| 47 | C2 | (1−9T+pT2)(1+9T+pT2) |
| 53 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 59 | C2 | (1−9T+pT2)(1+9T+pT2) |
| 61 | C2 | (1+T+pT2)2 |
| 67 | C2 | (1+7T+pT2)2 |
| 71 | C2 | (1+pT2)2 |
| 73 | C2 | (1+T+pT2)2 |
| 79 | C2 | (1+13T+pT2)2 |
| 83 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 89 | C2 | (1−15T+pT2)(1+15T+pT2) |
| 97 | C2 | (1+10T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.646784595072977282306137209646, −8.262637018939911096603858847029, −7.51155146227211557820915407148, −7.27657735328498763814943158038, −6.67413798525527807153917855846, −6.02455306491682974275355684196, −5.71711213824960626307579454428, −5.28434328079604079625535316421, −4.44529829557613531132250015524, −3.98660375345473223094112675622, −3.31407617989174490462667281240, −3.04451713874417289677681835886, −2.04448974040096779312937543400, −1.54505867526772913791014367907, 0,
1.54505867526772913791014367907, 2.04448974040096779312937543400, 3.04451713874417289677681835886, 3.31407617989174490462667281240, 3.98660375345473223094112675622, 4.44529829557613531132250015524, 5.28434328079604079625535316421, 5.71711213824960626307579454428, 6.02455306491682974275355684196, 6.67413798525527807153917855846, 7.27657735328498763814943158038, 7.51155146227211557820915407148, 8.262637018939911096603858847029, 8.646784595072977282306137209646