L(s) = 1 | + 2·2-s − 2·3-s + 2·4-s − 4·6-s + 3·9-s − 4·12-s − 8·13-s − 4·16-s + 6·18-s − 16·26-s − 4·27-s + 4·31-s − 8·32-s + 6·36-s − 16·37-s + 16·39-s + 4·41-s − 8·43-s + 8·48-s + 10·49-s − 16·52-s + 12·53-s − 8·54-s + 8·62-s − 8·64-s + 24·67-s + 24·71-s + ⋯ |
L(s) = 1 | + 1.41·2-s − 1.15·3-s + 4-s − 1.63·6-s + 9-s − 1.15·12-s − 2.21·13-s − 16-s + 1.41·18-s − 3.13·26-s − 0.769·27-s + 0.718·31-s − 1.41·32-s + 36-s − 2.63·37-s + 2.56·39-s + 0.624·41-s − 1.21·43-s + 1.15·48-s + 10/7·49-s − 2.21·52-s + 1.64·53-s − 1.08·54-s + 1.01·62-s − 64-s + 2.93·67-s + 2.84·71-s + ⋯ |
Λ(s)=(=(360000s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(360000s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
360000
= 26⋅32⋅54
|
Sign: |
1
|
Analytic conductor: |
22.9539 |
Root analytic conductor: |
2.18884 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 360000, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.690659418 |
L(21) |
≈ |
1.690659418 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1−pT+pT2 |
| 3 | C1 | (1+T)2 |
| 5 | | 1 |
good | 7 | C22 | 1−10T2+p2T4 |
| 11 | C2 | (1−pT2)2 |
| 13 | C2 | (1+4T+pT2)2 |
| 17 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 19 | C22 | 1−22T2+p2T4 |
| 23 | C22 | 1−30T2+p2T4 |
| 29 | C22 | 1−22T2+p2T4 |
| 31 | C2 | (1−2T+pT2)2 |
| 37 | C2 | (1+8T+pT2)2 |
| 41 | C2 | (1−2T+pT2)2 |
| 43 | C2 | (1+4T+pT2)2 |
| 47 | C22 | 1+50T2+p2T4 |
| 53 | C2 | (1−6T+pT2)2 |
| 59 | C22 | 1−102T2+p2T4 |
| 61 | C2 | (1−pT2)2 |
| 67 | C2 | (1−12T+pT2)2 |
| 71 | C2 | (1−12T+pT2)2 |
| 73 | C2 | (1−16T+pT2)(1+16T+pT2) |
| 79 | C2 | (1+10T+pT2)2 |
| 83 | C2 | (1−16T+pT2)2 |
| 89 | C2 | (1−10T+pT2)2 |
| 97 | C22 | 1−190T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.37331684323367922348054912130, −10.42438477100925057134788537796, −10.16937877639622175159315053319, −9.829932887489820091776894785556, −9.236559307019962860025346071624, −8.743380302330356769452213775578, −8.154389238982362704566127887242, −7.39455817417441250097264741188, −7.16239952312079613426910753772, −6.69363539304346412974409166717, −6.33381802077517724086867331514, −5.61505272819803059433681440237, −5.27213745154939131407998913986, −4.80713801216718580854087167474, −4.74817072293679982607834694681, −3.66080884828571460979894058315, −3.59109641256330707808232607961, −2.27687552175324204583534412412, −2.26658366836664787218179475693, −0.59793390921578088501730731337,
0.59793390921578088501730731337, 2.26658366836664787218179475693, 2.27687552175324204583534412412, 3.59109641256330707808232607961, 3.66080884828571460979894058315, 4.74817072293679982607834694681, 4.80713801216718580854087167474, 5.27213745154939131407998913986, 5.61505272819803059433681440237, 6.33381802077517724086867331514, 6.69363539304346412974409166717, 7.16239952312079613426910753772, 7.39455817417441250097264741188, 8.154389238982362704566127887242, 8.743380302330356769452213775578, 9.236559307019962860025346071624, 9.829932887489820091776894785556, 10.16937877639622175159315053319, 10.42438477100925057134788537796, 11.37331684323367922348054912130