L(s) = 1 | − 2·2-s + 3-s + 2·4-s − 2·6-s − 2·9-s + 2·12-s − 4·16-s + 4·18-s − 5·27-s + 16·31-s + 8·32-s − 4·36-s − 4·48-s − 10·49-s − 8·53-s + 10·54-s − 32·62-s − 8·64-s + 20·79-s + 81-s + 18·83-s + 16·93-s + 8·96-s + 20·98-s + 16·106-s − 34·107-s − 10·108-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 0.577·3-s + 4-s − 0.816·6-s − 2/3·9-s + 0.577·12-s − 16-s + 0.942·18-s − 0.962·27-s + 2.87·31-s + 1.41·32-s − 2/3·36-s − 0.577·48-s − 1.42·49-s − 1.09·53-s + 1.36·54-s − 4.06·62-s − 64-s + 2.25·79-s + 1/9·81-s + 1.97·83-s + 1.65·93-s + 0.816·96-s + 2.02·98-s + 1.55·106-s − 3.28·107-s − 0.962·108-s + ⋯ |
Λ(s)=(=(360000s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(360000s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
360000
= 26⋅32⋅54
|
Sign: |
1
|
Analytic conductor: |
22.9539 |
Root analytic conductor: |
2.18884 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 360000, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.8592417278 |
L(21) |
≈ |
0.8592417278 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+pT+pT2 |
| 3 | C2 | 1−T+pT2 |
| 5 | | 1 |
good | 7 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 11 | C2 | (1−5T+pT2)(1+5T+pT2) |
| 13 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 17 | C22 | 1−25T2+p2T4 |
| 19 | C22 | 1−37T2+p2T4 |
| 23 | C22 | 1−30T2+p2T4 |
| 29 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 31 | C2 | (1−8T+pT2)2 |
| 37 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 41 | C2 | (1−7T+pT2)(1+7T+pT2) |
| 43 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 47 | C22 | 1−90T2+p2T4 |
| 53 | C2 | (1+4T+pT2)2 |
| 59 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 61 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 67 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 71 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 73 | C2 | (1−T+pT2)(1+T+pT2) |
| 79 | C2 | (1−10T+pT2)2 |
| 83 | C2 | (1−9T+pT2)2 |
| 89 | C2 | (1−5T+pT2)(1+5T+pT2) |
| 97 | C2 | (1−2T+pT2)(1+2T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.665421196412280182170334766998, −8.182910838086186172188996077240, −7.974950820166071766849701202962, −7.77921455567468453333623630561, −6.88699879047458142537014880578, −6.54282764581716256623518288017, −6.19421351777184295505297292819, −5.39258018193498154600079656616, −4.80562532332567230387554534751, −4.35480286006529544992633071822, −3.52151660613402712389144369009, −2.90862550946813728509296480615, −2.38035753805067884592817569239, −1.61243686764748739595327097028, −0.64659822666269902998848780560,
0.64659822666269902998848780560, 1.61243686764748739595327097028, 2.38035753805067884592817569239, 2.90862550946813728509296480615, 3.52151660613402712389144369009, 4.35480286006529544992633071822, 4.80562532332567230387554534751, 5.39258018193498154600079656616, 6.19421351777184295505297292819, 6.54282764581716256623518288017, 6.88699879047458142537014880578, 7.77921455567468453333623630561, 7.974950820166071766849701202962, 8.182910838086186172188996077240, 8.665421196412280182170334766998