Properties

Label 4-600e2-1.1-c3e2-0-2
Degree $4$
Conductor $360000$
Sign $1$
Analytic cond. $1253.24$
Root an. cond. $5.94988$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9·9-s + 44·11-s + 106·19-s − 44·29-s − 70·31-s − 936·41-s + 325·49-s − 892·59-s + 254·61-s + 72·71-s − 2.73e3·79-s + 81·81-s − 288·89-s − 396·99-s − 2.88e3·101-s − 1.40e3·109-s − 1.21e3·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 4.39e3·169-s + ⋯
L(s)  = 1  − 1/3·9-s + 1.20·11-s + 1.27·19-s − 0.281·29-s − 0.405·31-s − 3.56·41-s + 0.947·49-s − 1.96·59-s + 0.533·61-s + 0.120·71-s − 3.89·79-s + 1/9·81-s − 0.343·89-s − 0.402·99-s − 2.83·101-s − 1.23·109-s − 0.909·121-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 0.000549·149-s + 0.000538·151-s + 0.000508·157-s + 0.000480·163-s + 0.000463·167-s + 1.99·169-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 360000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 360000 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(360000\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(1253.24\)
Root analytic conductor: \(5.94988\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 360000,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.862483826\)
\(L(\frac12)\) \(\approx\) \(1.862483826\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + p^{2} T^{2} \)
5 \( 1 \)
good7$C_2^2$ \( 1 - 325 T^{2} + p^{6} T^{4} \)
11$C_2$ \( ( 1 - 2 p T + p^{3} T^{2} )^{2} \)
13$C_2^2$ \( 1 - 4393 T^{2} + p^{6} T^{4} \)
17$C_2^2$ \( 1 - 6462 T^{2} + p^{6} T^{4} \)
19$C_2$ \( ( 1 - 53 T + p^{3} T^{2} )^{2} \)
23$C_2^2$ \( 1 - 20970 T^{2} + p^{6} T^{4} \)
29$C_2$ \( ( 1 + 22 T + p^{3} T^{2} )^{2} \)
31$C_2$ \( ( 1 + 35 T + p^{3} T^{2} )^{2} \)
37$C_2^2$ \( 1 - 28406 T^{2} + p^{6} T^{4} \)
41$C_2$ \( ( 1 + 468 T + p^{3} T^{2} )^{2} \)
43$C_2^2$ \( 1 + 26747 T^{2} + p^{6} T^{4} \)
47$C_2^2$ \( 1 - 154746 T^{2} + p^{6} T^{4} \)
53$C_2$ \( ( 1 - p^{3} T^{2} )^{2} \)
59$C_2$ \( ( 1 + 446 T + p^{3} T^{2} )^{2} \)
61$C_2$ \( ( 1 - 127 T + p^{3} T^{2} )^{2} \)
67$C_2^2$ \( 1 + 56195 T^{2} + p^{6} T^{4} \)
71$C_2$ \( ( 1 - 36 T + p^{3} T^{2} )^{2} \)
73$C_2^2$ \( 1 - 505550 T^{2} + p^{6} T^{4} \)
79$C_2$ \( ( 1 + 1368 T + p^{3} T^{2} )^{2} \)
83$C_2^2$ \( 1 + 151470 T^{2} + p^{6} T^{4} \)
89$C_2$ \( ( 1 + 144 T + p^{3} T^{2} )^{2} \)
97$C_2^2$ \( 1 - 661105 T^{2} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.53158371058046218806584971044, −9.877634234738837143114867484301, −9.722843475057498007671338704347, −9.031308307153737478236886534990, −8.914438510187738876439866311626, −8.263014615725009013937440777588, −7.947404079569868185136553003981, −7.17506162397990181815603387619, −6.99378367909157846798270436601, −6.50032104488283399902715301273, −5.92953983437766620278930323305, −5.27622247064438204674753108195, −5.19424292580739364108337406882, −4.15529490822911756044975170720, −3.99724911230310481174764778629, −3.04357003014518865393587486020, −2.97583692251408573816707361094, −1.59624120750350858608660224521, −1.55241600458236557118752941091, −0.40343040447119746235584574703, 0.40343040447119746235584574703, 1.55241600458236557118752941091, 1.59624120750350858608660224521, 2.97583692251408573816707361094, 3.04357003014518865393587486020, 3.99724911230310481174764778629, 4.15529490822911756044975170720, 5.19424292580739364108337406882, 5.27622247064438204674753108195, 5.92953983437766620278930323305, 6.50032104488283399902715301273, 6.99378367909157846798270436601, 7.17506162397990181815603387619, 7.947404079569868185136553003981, 8.263014615725009013937440777588, 8.914438510187738876439866311626, 9.031308307153737478236886534990, 9.722843475057498007671338704347, 9.877634234738837143114867484301, 10.53158371058046218806584971044

Graph of the $Z$-function along the critical line