L(s) = 1 | + 2-s + 3-s − 4-s + 5-s + 6-s − 3·8-s + 9-s + 10-s − 12-s − 6·13-s + 15-s − 16-s + 18-s − 20-s − 3·24-s + 25-s − 6·26-s + 27-s + 30-s − 14·31-s + 5·32-s − 36-s − 12·37-s − 6·39-s − 3·40-s − 6·41-s + 12·43-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.577·3-s − 1/2·4-s + 0.447·5-s + 0.408·6-s − 1.06·8-s + 1/3·9-s + 0.316·10-s − 0.288·12-s − 1.66·13-s + 0.258·15-s − 1/4·16-s + 0.235·18-s − 0.223·20-s − 0.612·24-s + 1/5·25-s − 1.17·26-s + 0.192·27-s + 0.182·30-s − 2.51·31-s + 0.883·32-s − 1/6·36-s − 1.97·37-s − 0.960·39-s − 0.474·40-s − 0.937·41-s + 1.82·43-s + ⋯ |
Λ(s)=(=(216000s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(216000s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
216000
= 26⋅33⋅53
|
Sign: |
−1
|
Analytic conductor: |
13.7723 |
Root analytic conductor: |
1.92642 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 216000, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1−T+pT2 |
| 3 | C1 | 1−T |
| 5 | C1 | 1−T |
good | 7 | C22 | 1+4T2+p2T4 |
| 11 | C22 | 1−12T2+p2T4 |
| 13 | C2×C2 | (1+pT2)(1+6T+pT2) |
| 17 | C22 | 1+2T2+p2T4 |
| 19 | C22 | 1+26T2+p2T4 |
| 23 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 29 | C22 | 1−50T2+p2T4 |
| 31 | C2×C2 | (1+4T+pT2)(1+10T+pT2) |
| 37 | C2×C2 | (1+2T+pT2)(1+10T+pT2) |
| 41 | C2×C2 | (1−2T+pT2)(1+8T+pT2) |
| 43 | C2×C2 | (1−8T+pT2)(1−4T+pT2) |
| 47 | C22 | 1−66T2+p2T4 |
| 53 | C2×C2 | (1−8T+pT2)(1+4T+pT2) |
| 59 | C22 | 1+48T2+p2T4 |
| 61 | C22 | 1−70T2+p2T4 |
| 67 | C2×C2 | (1+6T+pT2)(1+12T+pT2) |
| 71 | C2×C2 | (1+8T+pT2)(1+10T+pT2) |
| 73 | C22 | 1+94T2+p2T4 |
| 79 | C2×C2 | (1−10T+pT2)(1+8T+pT2) |
| 83 | C2×C2 | (1−12T+pT2)(1+pT2) |
| 89 | C2×C2 | (1−4T+pT2)(1+10T+pT2) |
| 97 | C22 | 1−50T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.952459487487609593821235860348, −8.537493255221591772381312734490, −7.72734910837097668814704140830, −7.22768925764998865187408445723, −7.14601101941812920286441366651, −6.20270917665986843342216292518, −5.75389234063252215721594925621, −5.21248906374596898228437570039, −4.84073760090588830949132841738, −4.26745923902757481679476313670, −3.58602887585418698409202789936, −3.11988097827646537753289594304, −2.38051412131266666016981326474, −1.70334468313765708451878470471, 0,
1.70334468313765708451878470471, 2.38051412131266666016981326474, 3.11988097827646537753289594304, 3.58602887585418698409202789936, 4.26745923902757481679476313670, 4.84073760090588830949132841738, 5.21248906374596898228437570039, 5.75389234063252215721594925621, 6.20270917665986843342216292518, 7.14601101941812920286441366651, 7.22768925764998865187408445723, 7.72734910837097668814704140830, 8.537493255221591772381312734490, 8.952459487487609593821235860348