L(s) = 1 | + 2-s + 3-s − 4-s + 5-s + 6-s − 3·8-s + 9-s + 10-s − 12-s − 6·13-s + 15-s − 16-s + 18-s − 20-s − 3·24-s + 25-s − 6·26-s + 27-s + 30-s − 14·31-s + 5·32-s − 36-s − 12·37-s − 6·39-s − 3·40-s − 6·41-s + 12·43-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.577·3-s − 1/2·4-s + 0.447·5-s + 0.408·6-s − 1.06·8-s + 1/3·9-s + 0.316·10-s − 0.288·12-s − 1.66·13-s + 0.258·15-s − 1/4·16-s + 0.235·18-s − 0.223·20-s − 0.612·24-s + 1/5·25-s − 1.17·26-s + 0.192·27-s + 0.182·30-s − 2.51·31-s + 0.883·32-s − 1/6·36-s − 1.97·37-s − 0.960·39-s − 0.474·40-s − 0.937·41-s + 1.82·43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 216000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 216000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | $C_2$ | \( 1 - T + p T^{2} \) |
| 3 | $C_1$ | \( 1 - T \) |
| 5 | $C_1$ | \( 1 - T \) |
good | 7 | $C_2^2$ | \( 1 + 4 T^{2} + p^{2} T^{4} \) |
| 11 | $C_2^2$ | \( 1 - 12 T^{2} + p^{2} T^{4} \) |
| 13 | $C_2$$\times$$C_2$ | \( ( 1 + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 17 | $C_2^2$ | \( 1 + 2 T^{2} + p^{2} T^{4} \) |
| 19 | $C_2^2$ | \( 1 + 26 T^{2} + p^{2} T^{4} \) |
| 23 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 29 | $C_2^2$ | \( 1 - 50 T^{2} + p^{2} T^{4} \) |
| 31 | $C_2$$\times$$C_2$ | \( ( 1 + 4 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
| 37 | $C_2$$\times$$C_2$ | \( ( 1 + 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
| 41 | $C_2$$\times$$C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 43 | $C_2$$\times$$C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 - 4 T + p T^{2} ) \) |
| 47 | $C_2^2$ | \( 1 - 66 T^{2} + p^{2} T^{4} \) |
| 53 | $C_2$$\times$$C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 59 | $C_2^2$ | \( 1 + 48 T^{2} + p^{2} T^{4} \) |
| 61 | $C_2^2$ | \( 1 - 70 T^{2} + p^{2} T^{4} \) |
| 67 | $C_2$$\times$$C_2$ | \( ( 1 + 6 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) |
| 71 | $C_2$$\times$$C_2$ | \( ( 1 + 8 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
| 73 | $C_2^2$ | \( 1 + 94 T^{2} + p^{2} T^{4} \) |
| 79 | $C_2$$\times$$C_2$ | \( ( 1 - 10 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 83 | $C_2$$\times$$C_2$ | \( ( 1 - 12 T + p T^{2} )( 1 + p T^{2} ) \) |
| 89 | $C_2$$\times$$C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
| 97 | $C_2^2$ | \( 1 - 50 T^{2} + p^{2} T^{4} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.952459487487609593821235860348, −8.537493255221591772381312734490, −7.72734910837097668814704140830, −7.22768925764998865187408445723, −7.14601101941812920286441366651, −6.20270917665986843342216292518, −5.75389234063252215721594925621, −5.21248906374596898228437570039, −4.84073760090588830949132841738, −4.26745923902757481679476313670, −3.58602887585418698409202789936, −3.11988097827646537753289594304, −2.38051412131266666016981326474, −1.70334468313765708451878470471, 0,
1.70334468313765708451878470471, 2.38051412131266666016981326474, 3.11988097827646537753289594304, 3.58602887585418698409202789936, 4.26745923902757481679476313670, 4.84073760090588830949132841738, 5.21248906374596898228437570039, 5.75389234063252215721594925621, 6.20270917665986843342216292518, 7.14601101941812920286441366651, 7.22768925764998865187408445723, 7.72734910837097668814704140830, 8.537493255221591772381312734490, 8.952459487487609593821235860348