L(s) = 1 | + 6·3-s − 4·5-s − 4·7-s + 27·9-s − 28·11-s − 26·13-s − 24·15-s − 36·17-s − 44·19-s − 24·21-s + 8·23-s − 226·25-s + 108·27-s − 204·29-s + 164·31-s − 168·33-s + 16·35-s − 668·37-s − 156·39-s − 100·41-s + 272·43-s − 108·45-s − 60·47-s − 566·49-s − 216·51-s − 708·53-s + 112·55-s + ⋯ |
L(s) = 1 | + 1.15·3-s − 0.357·5-s − 0.215·7-s + 9-s − 0.767·11-s − 0.554·13-s − 0.413·15-s − 0.513·17-s − 0.531·19-s − 0.249·21-s + 0.0725·23-s − 1.80·25-s + 0.769·27-s − 1.30·29-s + 0.950·31-s − 0.886·33-s + 0.0772·35-s − 2.96·37-s − 0.640·39-s − 0.380·41-s + 0.964·43-s − 0.357·45-s − 0.186·47-s − 1.65·49-s − 0.593·51-s − 1.83·53-s + 0.274·55-s + ⋯ |
Λ(s)=(=(389376s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(389376s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
389376
= 28⋅32⋅132
|
Sign: |
1
|
Analytic conductor: |
1355.50 |
Root analytic conductor: |
6.06771 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 389376, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1 | (1−pT)2 |
| 13 | C1 | (1+pT)2 |
good | 5 | D4 | 1+4T+242T2+4p3T3+p6T4 |
| 7 | D4 | 1+4T+582T2+4p3T3+p6T4 |
| 11 | D4 | 1+28T+2426T2+28p3T3+p6T4 |
| 17 | D4 | 1+36T+2038T2+36p3T3+p6T4 |
| 19 | D4 | 1+44T−498T2+44p3T3+p6T4 |
| 23 | D4 | 1−8T+8798T2−8p3T3+p6T4 |
| 29 | D4 | 1+204T+52270T2+204p3T3+p6T4 |
| 31 | D4 | 1−164T+66294T2−164p3T3+p6T4 |
| 37 | D4 | 1+668T+212814T2+668p3T3+p6T4 |
| 41 | D4 | 1+100T−2230T2+100p3T3+p6T4 |
| 43 | D4 | 1−272T+137142T2−272p3T3+p6T4 |
| 47 | D4 | 1+60T+203746T2+60p3T3+p6T4 |
| 53 | D4 | 1+708T+312478T2+708p3T3+p6T4 |
| 59 | D4 | 1−180T+395626T2−180p3T3+p6T4 |
| 61 | D4 | 1+1068T+726830T2+1068p3T3+p6T4 |
| 67 | D4 | 1−420T+207854T2−420p3T3+p6T4 |
| 71 | D4 | 1+436T+749474T2+436p3T3+p6T4 |
| 73 | D4 | 1+412T+163398T2+412p3T3+p6T4 |
| 79 | D4 | 1+672T+559646T2+672p3T3+p6T4 |
| 83 | D4 | 1−124T+501530T2−124p3T3+p6T4 |
| 89 | D4 | 1−140T+1088138T2−140p3T3+p6T4 |
| 97 | D4 | 1+188T−343530T2+188p3T3+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.789258739575076852169930477637, −9.694363709486846408786170940517, −8.954145579524072772818608161960, −8.792655390419103954979094097120, −8.148080423537310633559375186704, −7.88238360860659626711853741046, −7.35033661856113913683140544656, −7.19256751390995337792015543616, −6.23462255446169174667819699184, −6.19793003563150396067527806091, −5.12286682976149393526029596432, −4.96405277157720327117499920335, −4.18058544513800717697195864857, −3.77054670889504364859528607188, −3.17571619151732251100228736435, −2.72714156116705116800813935824, −1.88577486887734932884279074016, −1.66822073065225087140835287046, 0, 0,
1.66822073065225087140835287046, 1.88577486887734932884279074016, 2.72714156116705116800813935824, 3.17571619151732251100228736435, 3.77054670889504364859528607188, 4.18058544513800717697195864857, 4.96405277157720327117499920335, 5.12286682976149393526029596432, 6.19793003563150396067527806091, 6.23462255446169174667819699184, 7.19256751390995337792015543616, 7.35033661856113913683140544656, 7.88238360860659626711853741046, 8.148080423537310633559375186704, 8.792655390419103954979094097120, 8.954145579524072772818608161960, 9.694363709486846408786170940517, 9.789258739575076852169930477637