L(s) = 1 | − 6·3-s + 27·9-s − 26·13-s + 36·17-s − 48·23-s + 202·25-s − 108·27-s + 12·29-s + 156·39-s − 40·43-s + 578·49-s − 216·51-s − 612·53-s + 140·61-s + 288·69-s − 1.21e3·75-s + 832·79-s + 405·81-s − 72·87-s + 2.55e3·101-s + 1.75e3·107-s + 1.38e3·113-s − 702·117-s + 2.36e3·121-s + 127-s + 240·129-s + 131-s + ⋯ |
L(s) = 1 | − 1.15·3-s + 9-s − 0.554·13-s + 0.513·17-s − 0.435·23-s + 1.61·25-s − 0.769·27-s + 0.0768·29-s + 0.640·39-s − 0.141·43-s + 1.68·49-s − 0.593·51-s − 1.58·53-s + 0.293·61-s + 0.502·69-s − 1.86·75-s + 1.18·79-s + 5/9·81-s − 0.0887·87-s + 2.51·101-s + 1.58·107-s + 1.14·113-s − 0.554·117-s + 1.77·121-s + 0.000698·127-s + 0.163·129-s + 0.000666·131-s + ⋯ |
Λ(s)=(=(389376s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(389376s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
389376
= 28⋅32⋅132
|
Sign: |
1
|
Analytic conductor: |
1355.50 |
Root analytic conductor: |
6.06771 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 389376, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
1.566220146 |
L(21) |
≈ |
1.566220146 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1 | (1+pT)2 |
| 13 | C2 | 1+2pT+p3T2 |
good | 5 | C22 | 1−202T2+p6T4 |
| 7 | C22 | 1−578T2+p6T4 |
| 11 | C22 | 1−2362T2+p6T4 |
| 17 | C2 | (1−18T+p3T2)2 |
| 19 | C22 | 1−11690T2+p6T4 |
| 23 | C2 | (1+24T+p3T2)2 |
| 29 | C2 | (1−6T+p3T2)2 |
| 31 | C22 | 1−50p2T2+p6T4 |
| 37 | C22 | 1−66314T2+p6T4 |
| 41 | C22 | 1−125554T2+p6T4 |
| 43 | C2 | (1+20T+p3T2)2 |
| 47 | C22 | 1−120946T2+p6T4 |
| 53 | C2 | (1+306T+p3T2)2 |
| 59 | C22 | 1+83750T2+p6T4 |
| 61 | C2 | (1−70T+p3T2)2 |
| 67 | C22 | 1−395594T2+p6T4 |
| 71 | C22 | 1+342686T2+p6T4 |
| 73 | C22 | 1−777842T2+p6T4 |
| 79 | C2 | (1−416T+p3T2)2 |
| 83 | C22 | 1+17078T2+p6T4 |
| 89 | C22 | 1−1409170T2+p6T4 |
| 97 | C22 | 1−1548098T2+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.49361312444175652880191203906, −10.08233209661012421080280868651, −9.691089477507971603465867743613, −9.204462708357827299556523815611, −8.686421092017824869469162151228, −8.277717279890582151086819338876, −7.48944476379671863725420031909, −7.41149842440090257512723258767, −6.81854566334900337736092477414, −6.26354100113121662877903392870, −5.99428538010790908656445017488, −5.37400025855853906992394171624, −4.81767351197160746903693914730, −4.69823802741809431962518271939, −3.85566403046489682942511542100, −3.31735195520040350489574850926, −2.57538884598504334606969270529, −1.85941798453617844214838396428, −1.02127159714424799426160220637, −0.47359552811597610726077333166,
0.47359552811597610726077333166, 1.02127159714424799426160220637, 1.85941798453617844214838396428, 2.57538884598504334606969270529, 3.31735195520040350489574850926, 3.85566403046489682942511542100, 4.69823802741809431962518271939, 4.81767351197160746903693914730, 5.37400025855853906992394171624, 5.99428538010790908656445017488, 6.26354100113121662877903392870, 6.81854566334900337736092477414, 7.41149842440090257512723258767, 7.48944476379671863725420031909, 8.277717279890582151086819338876, 8.686421092017824869469162151228, 9.204462708357827299556523815611, 9.691089477507971603465867743613, 10.08233209661012421080280868651, 10.49361312444175652880191203906