L(s) = 1 | − 4·3-s − 2·5-s + 6·9-s − 4·13-s + 8·15-s − 25-s + 4·27-s − 20·37-s + 16·39-s − 12·41-s − 12·43-s − 12·45-s + 2·49-s + 12·53-s + 8·65-s − 20·67-s + 24·71-s + 4·75-s − 16·79-s − 37·81-s + 12·83-s − 4·89-s + 4·107-s + 80·111-s − 24·117-s − 18·121-s + 48·123-s + ⋯ |
L(s) = 1 | − 2.30·3-s − 0.894·5-s + 2·9-s − 1.10·13-s + 2.06·15-s − 1/5·25-s + 0.769·27-s − 3.28·37-s + 2.56·39-s − 1.87·41-s − 1.82·43-s − 1.78·45-s + 2/7·49-s + 1.64·53-s + 0.992·65-s − 2.44·67-s + 2.84·71-s + 0.461·75-s − 1.80·79-s − 4.11·81-s + 1.31·83-s − 0.423·89-s + 0.386·107-s + 7.59·111-s − 2.21·117-s − 1.63·121-s + 4.32·123-s + ⋯ |
Λ(s)=(=(409600s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(409600s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
409600
= 214⋅52
|
Sign: |
1
|
Analytic conductor: |
26.1164 |
Root analytic conductor: |
2.26062 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 409600, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C2 | 1+2T+pT2 |
good | 3 | C2 | (1+2T+pT2)2 |
| 7 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 11 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 13 | C2 | (1+2T+pT2)2 |
| 17 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 19 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 23 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 29 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 31 | C2 | (1+pT2)2 |
| 37 | C2 | (1+10T+pT2)2 |
| 41 | C2 | (1+6T+pT2)2 |
| 43 | C2 | (1+6T+pT2)2 |
| 47 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 53 | C2 | (1−6T+pT2)2 |
| 59 | C2 | (1−14T+pT2)(1+14T+pT2) |
| 61 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 67 | C2 | (1+10T+pT2)2 |
| 71 | C2 | (1−12T+pT2)2 |
| 73 | C2 | (1−14T+pT2)(1+14T+pT2) |
| 79 | C2 | (1+8T+pT2)2 |
| 83 | C2 | (1−6T+pT2)2 |
| 89 | C2 | (1+2T+pT2)2 |
| 97 | C2 | (1−2T+pT2)(1+2T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.212002059885944684861021878477, −7.50419758061409482324369399006, −6.97464122003923989664965494039, −6.84978263741944475168127235714, −6.33050260025483473718379487161, −5.63664495018734253206101527190, −5.36997692852317792358039338755, −4.84373431553687523132526670248, −4.72524620355206898427648612891, −3.69802392152085758411183661848, −3.36730269661969347724618284285, −2.35167390023705158699342586043, −1.36685449629542271877328763705, 0, 0,
1.36685449629542271877328763705, 2.35167390023705158699342586043, 3.36730269661969347724618284285, 3.69802392152085758411183661848, 4.72524620355206898427648612891, 4.84373431553687523132526670248, 5.36997692852317792358039338755, 5.63664495018734253206101527190, 6.33050260025483473718379487161, 6.84978263741944475168127235714, 6.97464122003923989664965494039, 7.50419758061409482324369399006, 8.212002059885944684861021878477