L(s) = 1 | − 4·3-s − 2·5-s + 6·9-s − 4·13-s + 8·15-s − 25-s + 4·27-s − 20·37-s + 16·39-s − 12·41-s − 12·43-s − 12·45-s + 2·49-s + 12·53-s + 8·65-s − 20·67-s + 24·71-s + 4·75-s − 16·79-s − 37·81-s + 12·83-s − 4·89-s + 4·107-s + 80·111-s − 24·117-s − 18·121-s + 48·123-s + ⋯ |
L(s) = 1 | − 2.30·3-s − 0.894·5-s + 2·9-s − 1.10·13-s + 2.06·15-s − 1/5·25-s + 0.769·27-s − 3.28·37-s + 2.56·39-s − 1.87·41-s − 1.82·43-s − 1.78·45-s + 2/7·49-s + 1.64·53-s + 0.992·65-s − 2.44·67-s + 2.84·71-s + 0.461·75-s − 1.80·79-s − 4.11·81-s + 1.31·83-s − 0.423·89-s + 0.386·107-s + 7.59·111-s − 2.21·117-s − 1.63·121-s + 4.32·123-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 409600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 409600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | | \( 1 \) |
| 5 | $C_2$ | \( 1 + 2 T + p T^{2} \) |
good | 3 | $C_2$ | \( ( 1 + 2 T + p T^{2} )^{2} \) |
| 7 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 11 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 13 | $C_2$ | \( ( 1 + 2 T + p T^{2} )^{2} \) |
| 17 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 19 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 23 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 29 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 31 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 37 | $C_2$ | \( ( 1 + 10 T + p T^{2} )^{2} \) |
| 41 | $C_2$ | \( ( 1 + 6 T + p T^{2} )^{2} \) |
| 43 | $C_2$ | \( ( 1 + 6 T + p T^{2} )^{2} \) |
| 47 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 53 | $C_2$ | \( ( 1 - 6 T + p T^{2} )^{2} \) |
| 59 | $C_2$ | \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \) |
| 61 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 67 | $C_2$ | \( ( 1 + 10 T + p T^{2} )^{2} \) |
| 71 | $C_2$ | \( ( 1 - 12 T + p T^{2} )^{2} \) |
| 73 | $C_2$ | \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \) |
| 79 | $C_2$ | \( ( 1 + 8 T + p T^{2} )^{2} \) |
| 83 | $C_2$ | \( ( 1 - 6 T + p T^{2} )^{2} \) |
| 89 | $C_2$ | \( ( 1 + 2 T + p T^{2} )^{2} \) |
| 97 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.212002059885944684861021878477, −7.50419758061409482324369399006, −6.97464122003923989664965494039, −6.84978263741944475168127235714, −6.33050260025483473718379487161, −5.63664495018734253206101527190, −5.36997692852317792358039338755, −4.84373431553687523132526670248, −4.72524620355206898427648612891, −3.69802392152085758411183661848, −3.36730269661969347724618284285, −2.35167390023705158699342586043, −1.36685449629542271877328763705, 0, 0,
1.36685449629542271877328763705, 2.35167390023705158699342586043, 3.36730269661969347724618284285, 3.69802392152085758411183661848, 4.72524620355206898427648612891, 4.84373431553687523132526670248, 5.36997692852317792358039338755, 5.63664495018734253206101527190, 6.33050260025483473718379487161, 6.84978263741944475168127235714, 6.97464122003923989664965494039, 7.50419758061409482324369399006, 8.212002059885944684861021878477