Properties

Label 4-640e2-1.1-c1e2-0-39
Degree $4$
Conductor $409600$
Sign $1$
Analytic cond. $26.1164$
Root an. cond. $2.26062$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·3-s − 2·5-s + 6·9-s − 4·13-s + 8·15-s − 25-s + 4·27-s − 20·37-s + 16·39-s − 12·41-s − 12·43-s − 12·45-s + 2·49-s + 12·53-s + 8·65-s − 20·67-s + 24·71-s + 4·75-s − 16·79-s − 37·81-s + 12·83-s − 4·89-s + 4·107-s + 80·111-s − 24·117-s − 18·121-s + 48·123-s + ⋯
L(s)  = 1  − 2.30·3-s − 0.894·5-s + 2·9-s − 1.10·13-s + 2.06·15-s − 1/5·25-s + 0.769·27-s − 3.28·37-s + 2.56·39-s − 1.87·41-s − 1.82·43-s − 1.78·45-s + 2/7·49-s + 1.64·53-s + 0.992·65-s − 2.44·67-s + 2.84·71-s + 0.461·75-s − 1.80·79-s − 4.11·81-s + 1.31·83-s − 0.423·89-s + 0.386·107-s + 7.59·111-s − 2.21·117-s − 1.63·121-s + 4.32·123-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 409600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 409600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(409600\)    =    \(2^{14} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(26.1164\)
Root analytic conductor: \(2.26062\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 409600,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_2$ \( 1 + 2 T + p T^{2} \)
good3$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
13$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
79$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.212002059885944684861021878477, −7.50419758061409482324369399006, −6.97464122003923989664965494039, −6.84978263741944475168127235714, −6.33050260025483473718379487161, −5.63664495018734253206101527190, −5.36997692852317792358039338755, −4.84373431553687523132526670248, −4.72524620355206898427648612891, −3.69802392152085758411183661848, −3.36730269661969347724618284285, −2.35167390023705158699342586043, −1.36685449629542271877328763705, 0, 0, 1.36685449629542271877328763705, 2.35167390023705158699342586043, 3.36730269661969347724618284285, 3.69802392152085758411183661848, 4.72524620355206898427648612891, 4.84373431553687523132526670248, 5.36997692852317792358039338755, 5.63664495018734253206101527190, 6.33050260025483473718379487161, 6.84978263741944475168127235714, 6.97464122003923989664965494039, 7.50419758061409482324369399006, 8.212002059885944684861021878477

Graph of the $Z$-function along the critical line