L(s) = 1 | + 2·3-s − 2·5-s + 2·9-s − 6·11-s − 6·13-s − 4·15-s − 2·19-s + 16·23-s − 25-s + 6·27-s − 6·29-s − 12·33-s − 6·37-s − 12·39-s + 6·43-s − 4·45-s − 14·49-s + 18·53-s + 12·55-s − 4·57-s + 18·59-s + 10·61-s + 12·65-s − 6·67-s + 32·69-s + 12·73-s − 2·75-s + ⋯ |
L(s) = 1 | + 1.15·3-s − 0.894·5-s + 2/3·9-s − 1.80·11-s − 1.66·13-s − 1.03·15-s − 0.458·19-s + 3.33·23-s − 1/5·25-s + 1.15·27-s − 1.11·29-s − 2.08·33-s − 0.986·37-s − 1.92·39-s + 0.914·43-s − 0.596·45-s − 2·49-s + 2.47·53-s + 1.61·55-s − 0.529·57-s + 2.34·59-s + 1.28·61-s + 1.48·65-s − 0.733·67-s + 3.85·69-s + 1.40·73-s − 0.230·75-s + ⋯ |
Λ(s)=(=(409600s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(409600s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
409600
= 214⋅52
|
Sign: |
1
|
Analytic conductor: |
26.1164 |
Root analytic conductor: |
2.26062 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 409600, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.581314962 |
L(21) |
≈ |
1.581314962 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C2 | 1+2T+pT2 |
good | 3 | C22 | 1−2T+2T2−2pT3+p2T4 |
| 7 | C2 | (1+pT2)2 |
| 11 | C22 | 1+6T+18T2+6pT3+p2T4 |
| 13 | C22 | 1+6T+18T2+6pT3+p2T4 |
| 17 | C22 | 1−18T2+p2T4 |
| 19 | C22 | 1+2T+2T2+2pT3+p2T4 |
| 23 | C2 | (1−8T+pT2)2 |
| 29 | C2 | (1−4T+pT2)(1+10T+pT2) |
| 31 | C2 | (1+pT2)2 |
| 37 | C22 | 1+6T+18T2+6pT3+p2T4 |
| 41 | C2 | (1−pT2)2 |
| 43 | C22 | 1−6T+18T2−6pT3+p2T4 |
| 47 | C22 | 1−90T2+p2T4 |
| 53 | C2 | (1−14T+pT2)(1−4T+pT2) |
| 59 | C22 | 1−18T+162T2−18pT3+p2T4 |
| 61 | C22 | 1−10T+50T2−10pT3+p2T4 |
| 67 | C22 | 1+6T+18T2+6pT3+p2T4 |
| 71 | C22 | 1−106T2+p2T4 |
| 73 | C2 | (1−6T+pT2)2 |
| 79 | C2 | (1+8T+pT2)2 |
| 83 | C22 | 1−18T+162T2−18pT3+p2T4 |
| 89 | C22 | 1−34T2+p2T4 |
| 97 | C22 | 1−50T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.74882932097001688569872328489, −10.24428104584806873137314125239, −10.02422947359015508493052249545, −9.364282824778839666626575241565, −8.931900027358690525427905030296, −8.696290961091251964030592508103, −7.967965778865657239327681287075, −7.934188730423437248325410580756, −7.28853589815066075941469339499, −6.99797587148800500169818590833, −6.72687674706282178522360407733, −5.43700459579989669504937424426, −5.24512710445198219723813836794, −4.90268197831600952299765836974, −4.16645413286408649562553726047, −3.60532436475525668714739903053, −2.78832385338468890164191577751, −2.78011231566836806873499945014, −2.03699737882536283037917391263, −0.62029260297903430405597842059,
0.62029260297903430405597842059, 2.03699737882536283037917391263, 2.78011231566836806873499945014, 2.78832385338468890164191577751, 3.60532436475525668714739903053, 4.16645413286408649562553726047, 4.90268197831600952299765836974, 5.24512710445198219723813836794, 5.43700459579989669504937424426, 6.72687674706282178522360407733, 6.99797587148800500169818590833, 7.28853589815066075941469339499, 7.934188730423437248325410580756, 7.967965778865657239327681287075, 8.696290961091251964030592508103, 8.931900027358690525427905030296, 9.364282824778839666626575241565, 10.02422947359015508493052249545, 10.24428104584806873137314125239, 10.74882932097001688569872328489