L(s) = 1 | + 2-s − 2·3-s + 2·4-s + 5-s − 2·6-s − 4·7-s + 5·8-s − 3·9-s + 10-s − 3·11-s − 4·12-s − 5·13-s − 4·14-s − 2·15-s + 5·16-s − 6·17-s − 3·18-s + 7·19-s + 2·20-s + 8·21-s − 3·22-s − 14·23-s − 10·24-s − 5·26-s + 14·27-s − 8·28-s − 7·29-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 1.15·3-s + 4-s + 0.447·5-s − 0.816·6-s − 1.51·7-s + 1.76·8-s − 9-s + 0.316·10-s − 0.904·11-s − 1.15·12-s − 1.38·13-s − 1.06·14-s − 0.516·15-s + 5/4·16-s − 1.45·17-s − 0.707·18-s + 1.60·19-s + 0.447·20-s + 1.74·21-s − 0.639·22-s − 2.91·23-s − 2.04·24-s − 0.980·26-s + 2.69·27-s − 1.51·28-s − 1.29·29-s + ⋯ |
Λ(s)=(=(442225s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(442225s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
442225
= 52⋅72⋅192
|
Sign: |
1
|
Analytic conductor: |
28.1966 |
Root analytic conductor: |
2.30435 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 442225, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.8227246014 |
L(21) |
≈ |
0.8227246014 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 5 | C2 | 1−T+T2 |
| 7 | C2 | 1+4T+pT2 |
| 19 | C2 | 1−7T+pT2 |
good | 2 | C22 | 1−T−T2−pT3+p2T4 |
| 3 | C2 | (1+T+pT2)2 |
| 11 | C22 | 1+3T−2T2+3pT3+p2T4 |
| 13 | C2 | (1−2T+pT2)(1+7T+pT2) |
| 17 | C2 | (1+3T+pT2)2 |
| 23 | C2 | (1+7T+pT2)2 |
| 29 | C22 | 1+7T+20T2+7pT3+p2T4 |
| 31 | C22 | 1−5T−6T2−5pT3+p2T4 |
| 37 | C22 | 1−3T−28T2−3pT3+p2T4 |
| 41 | C22 | 1−T−40T2−pT3+p2T4 |
| 43 | C22 | 1−11T+78T2−11pT3+p2T4 |
| 47 | C2 | (1+11T+pT2)2 |
| 53 | C22 | 1−10T+47T2−10pT3+p2T4 |
| 59 | C2 | (1−T+pT2)2 |
| 61 | C2 | (1−11T+pT2)2 |
| 67 | C22 | 1+12T+77T2+12pT3+p2T4 |
| 71 | C22 | 1−T−70T2−pT3+p2T4 |
| 73 | C2 | (1−9T+pT2)2 |
| 79 | C22 | 1−pT2+p2T4 |
| 83 | C2 | (1+4T+pT2)2 |
| 89 | C2 | (1+T+pT2)2 |
| 97 | C2 | (1−14T+pT2)(1+19T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.04810506722079392610604168601, −10.28319571736789455632240517658, −9.872036998041582077472852435303, −9.839595035518194324831741362933, −9.273232199948768071947077071139, −8.268828255590503060168776330654, −8.145648580987681945901113129016, −7.44571934435379874629893617307, −7.07312929641254898814967058733, −6.50941044628014587976451666950, −6.23406030329819193729561259224, −5.79013511825916754156805582084, −5.26597203143933976397524961780, −5.11333476582095494855558285947, −4.29756212507897062564521025234, −3.77977546925852383595195678130, −2.87991705554582719859113337328, −2.51173710233023751336438617104, −2.03822747743073103949035430428, −0.42499045854351675994417798783,
0.42499045854351675994417798783, 2.03822747743073103949035430428, 2.51173710233023751336438617104, 2.87991705554582719859113337328, 3.77977546925852383595195678130, 4.29756212507897062564521025234, 5.11333476582095494855558285947, 5.26597203143933976397524961780, 5.79013511825916754156805582084, 6.23406030329819193729561259224, 6.50941044628014587976451666950, 7.07312929641254898814967058733, 7.44571934435379874629893617307, 8.145648580987681945901113129016, 8.268828255590503060168776330654, 9.273232199948768071947077071139, 9.839595035518194324831741362933, 9.872036998041582077472852435303, 10.28319571736789455632240517658, 11.04810506722079392610604168601