L(s) = 1 | − 2·2-s + 2·4-s + 3·9-s − 4·16-s − 6·18-s + 2·29-s + 8·32-s + 6·36-s − 7·49-s + 20·53-s − 4·58-s − 8·64-s + 14·98-s − 40·106-s + 30·109-s − 16·113-s + 4·116-s − 21·121-s + 127-s + 131-s + 137-s + 139-s − 12·144-s + 149-s + 151-s + 157-s + 163-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 4-s + 9-s − 16-s − 1.41·18-s + 0.371·29-s + 1.41·32-s + 36-s − 49-s + 2.74·53-s − 0.525·58-s − 64-s + 1.41·98-s − 3.88·106-s + 2.87·109-s − 1.50·113-s + 0.371·116-s − 1.90·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 144-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 490000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 490000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9205636896\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9205636896\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | $C_2$ | \( 1 + p T + p T^{2} \) |
| 5 | | \( 1 \) |
| 7 | $C_2$ | \( 1 + p T^{2} \) |
good | 3 | $C_2$ | \( ( 1 - p T + p T^{2} )( 1 + p T + p T^{2} ) \) |
| 11 | $C_2$ | \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \) |
| 13 | $C_2^2$ | \( 1 - 17 T^{2} + p^{2} T^{4} \) |
| 17 | $C_2^2$ | \( 1 - 25 T^{2} + p^{2} T^{4} \) |
| 19 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 23 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 29 | $C_2$ | \( ( 1 - T + p T^{2} )^{2} \) |
| 31 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 37 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 41 | $C_2^2$ | \( 1 - 46 T^{2} + p^{2} T^{4} \) |
| 43 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 47 | $C_2$ | \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \) |
| 53 | $C_2$ | \( ( 1 - 10 T + p T^{2} )^{2} \) |
| 59 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 61 | $C_2$ | \( ( 1 - p T^{2} )^{2} \) |
| 67 | $C_2$ | \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \) |
| 71 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 73 | $C_2$ | \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \) |
| 79 | $C_2$ | \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \) |
| 83 | $C_2$ | \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) |
| 89 | $C_2^2$ | \( 1 - 34 T^{2} + p^{2} T^{4} \) |
| 97 | $C_2^2$ | \( 1 + 31 T^{2} + p^{2} T^{4} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.399547694591570114395175387242, −8.304482940675401206155783925314, −7.64024279260154245455752826177, −7.26567967929252176925762595750, −6.93095569414943302325531295146, −6.48804258116661570681810866779, −5.87671722293011809683501951143, −5.26166490985109088140711756770, −4.67263530229777170111796408991, −4.21436753526871820554033625305, −3.65340200055647704790741625600, −2.80747401560655361004950373148, −2.12076040886554542994327127542, −1.47583381429041937688787004072, −0.68533387951976935347434466916,
0.68533387951976935347434466916, 1.47583381429041937688787004072, 2.12076040886554542994327127542, 2.80747401560655361004950373148, 3.65340200055647704790741625600, 4.21436753526871820554033625305, 4.67263530229777170111796408991, 5.26166490985109088140711756770, 5.87671722293011809683501951143, 6.48804258116661570681810866779, 6.93095569414943302325531295146, 7.26567967929252176925762595750, 7.64024279260154245455752826177, 8.304482940675401206155783925314, 8.399547694591570114395175387242