L(s) = 1 | − 2·2-s + 2·4-s + 3·9-s − 4·16-s − 6·18-s + 2·29-s + 8·32-s + 6·36-s − 7·49-s + 20·53-s − 4·58-s − 8·64-s + 14·98-s − 40·106-s + 30·109-s − 16·113-s + 4·116-s − 21·121-s + 127-s + 131-s + 137-s + 139-s − 12·144-s + 149-s + 151-s + 157-s + 163-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 4-s + 9-s − 16-s − 1.41·18-s + 0.371·29-s + 1.41·32-s + 36-s − 49-s + 2.74·53-s − 0.525·58-s − 64-s + 1.41·98-s − 3.88·106-s + 2.87·109-s − 1.50·113-s + 0.371·116-s − 1.90·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 144-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + ⋯ |
Λ(s)=(=(490000s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(490000s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
490000
= 24⋅54⋅72
|
Sign: |
1
|
Analytic conductor: |
31.2428 |
Root analytic conductor: |
2.36421 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 490000, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.9205636896 |
L(21) |
≈ |
0.9205636896 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+pT+pT2 |
| 5 | | 1 |
| 7 | C2 | 1+pT2 |
good | 3 | C2 | (1−pT+pT2)(1+pT+pT2) |
| 11 | C2 | (1−T+pT2)(1+T+pT2) |
| 13 | C22 | 1−17T2+p2T4 |
| 17 | C22 | 1−25T2+p2T4 |
| 19 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 23 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 29 | C2 | (1−T+pT2)2 |
| 31 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 37 | C2 | (1+pT2)2 |
| 41 | C22 | 1−46T2+p2T4 |
| 43 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 47 | C2 | (1−9T+pT2)(1+9T+pT2) |
| 53 | C2 | (1−10T+pT2)2 |
| 59 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 61 | C2 | (1−pT2)2 |
| 67 | C2 | (1−14T+pT2)(1+14T+pT2) |
| 71 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 73 | C2 | (1−16T+pT2)(1+16T+pT2) |
| 79 | C2 | (1−T+pT2)(1+T+pT2) |
| 83 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 89 | C22 | 1−34T2+p2T4 |
| 97 | C22 | 1+31T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.399547694591570114395175387242, −8.304482940675401206155783925314, −7.64024279260154245455752826177, −7.26567967929252176925762595750, −6.93095569414943302325531295146, −6.48804258116661570681810866779, −5.87671722293011809683501951143, −5.26166490985109088140711756770, −4.67263530229777170111796408991, −4.21436753526871820554033625305, −3.65340200055647704790741625600, −2.80747401560655361004950373148, −2.12076040886554542994327127542, −1.47583381429041937688787004072, −0.68533387951976935347434466916,
0.68533387951976935347434466916, 1.47583381429041937688787004072, 2.12076040886554542994327127542, 2.80747401560655361004950373148, 3.65340200055647704790741625600, 4.21436753526871820554033625305, 4.67263530229777170111796408991, 5.26166490985109088140711756770, 5.87671722293011809683501951143, 6.48804258116661570681810866779, 6.93095569414943302325531295146, 7.26567967929252176925762595750, 7.64024279260154245455752826177, 8.304482940675401206155783925314, 8.399547694591570114395175387242