Properties

Label 4-700e2-1.1-c1e2-0-3
Degree $4$
Conductor $490000$
Sign $1$
Analytic cond. $31.2428$
Root an. cond. $2.36421$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 2·4-s + 3·9-s − 4·16-s − 6·18-s + 2·29-s + 8·32-s + 6·36-s − 7·49-s + 20·53-s − 4·58-s − 8·64-s + 14·98-s − 40·106-s + 30·109-s − 16·113-s + 4·116-s − 21·121-s + 127-s + 131-s + 137-s + 139-s − 12·144-s + 149-s + 151-s + 157-s + 163-s + ⋯
L(s)  = 1  − 1.41·2-s + 4-s + 9-s − 16-s − 1.41·18-s + 0.371·29-s + 1.41·32-s + 36-s − 49-s + 2.74·53-s − 0.525·58-s − 64-s + 1.41·98-s − 3.88·106-s + 2.87·109-s − 1.50·113-s + 0.371·116-s − 1.90·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 144-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 490000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 490000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(490000\)    =    \(2^{4} \cdot 5^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(31.2428\)
Root analytic conductor: \(2.36421\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 490000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9205636896\)
\(L(\frac12)\) \(\approx\) \(0.9205636896\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p T + p T^{2} \)
5 \( 1 \)
7$C_2$ \( 1 + p T^{2} \)
good3$C_2$ \( ( 1 - p T + p T^{2} )( 1 + p T + p T^{2} ) \)
11$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
13$C_2^2$ \( 1 - 17 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 25 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
37$C_2$ \( ( 1 + p T^{2} )^{2} \)
41$C_2^2$ \( 1 - 46 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
61$C_2$ \( ( 1 - p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
79$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 + 31 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.399547694591570114395175387242, −8.304482940675401206155783925314, −7.64024279260154245455752826177, −7.26567967929252176925762595750, −6.93095569414943302325531295146, −6.48804258116661570681810866779, −5.87671722293011809683501951143, −5.26166490985109088140711756770, −4.67263530229777170111796408991, −4.21436753526871820554033625305, −3.65340200055647704790741625600, −2.80747401560655361004950373148, −2.12076040886554542994327127542, −1.47583381429041937688787004072, −0.68533387951976935347434466916, 0.68533387951976935347434466916, 1.47583381429041937688787004072, 2.12076040886554542994327127542, 2.80747401560655361004950373148, 3.65340200055647704790741625600, 4.21436753526871820554033625305, 4.67263530229777170111796408991, 5.26166490985109088140711756770, 5.87671722293011809683501951143, 6.48804258116661570681810866779, 6.93095569414943302325531295146, 7.26567967929252176925762595750, 7.64024279260154245455752826177, 8.304482940675401206155783925314, 8.399547694591570114395175387242

Graph of the $Z$-function along the critical line