L(s) = 1 | + 6·9-s − 10·11-s + 12·19-s + 6·29-s + 4·31-s − 8·41-s − 49-s + 28·59-s + 8·61-s − 26·71-s − 2·79-s + 27·81-s − 20·89-s − 60·99-s + 24·101-s − 18·109-s + 53·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 10·169-s + ⋯ |
L(s) = 1 | + 2·9-s − 3.01·11-s + 2.75·19-s + 1.11·29-s + 0.718·31-s − 1.24·41-s − 1/7·49-s + 3.64·59-s + 1.02·61-s − 3.08·71-s − 0.225·79-s + 3·81-s − 2.11·89-s − 6.03·99-s + 2.38·101-s − 1.72·109-s + 4.81·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.769·169-s + ⋯ |
Λ(s)=(=(490000s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(490000s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
490000
= 24⋅54⋅72
|
Sign: |
1
|
Analytic conductor: |
31.2428 |
Root analytic conductor: |
2.36421 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 490000, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.994934565 |
L(21) |
≈ |
1.994934565 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | | 1 |
| 7 | C2 | 1+T2 |
good | 3 | C2 | (1−pT2)2 |
| 11 | C2 | (1+5T+pT2)2 |
| 13 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 17 | C22 | 1−18T2+p2T4 |
| 19 | C2 | (1−6T+pT2)2 |
| 23 | C22 | 1−37T2+p2T4 |
| 29 | C2 | (1−3T+pT2)2 |
| 31 | C2 | (1−2T+pT2)2 |
| 37 | C22 | 1−25T2+p2T4 |
| 41 | C2 | (1+4T+pT2)2 |
| 43 | C22 | 1−37T2+p2T4 |
| 47 | C22 | 1−90T2+p2T4 |
| 53 | C22 | 1−6T2+p2T4 |
| 59 | C2 | (1−14T+pT2)2 |
| 61 | C2 | (1−4T+pT2)2 |
| 67 | C22 | 1−125T2+p2T4 |
| 71 | C2 | (1+13T+pT2)2 |
| 73 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 79 | C2 | (1+T+pT2)2 |
| 83 | C22 | 1−66T2+p2T4 |
| 89 | C2 | (1+10T+pT2)2 |
| 97 | C22 | 1−190T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.39630201846709653688252958820, −10.10741351579027436891973055389, −9.898435165927122424821339861481, −9.833678509456435057677641150799, −8.880575765166552278343172025796, −8.396994660749056155037365720496, −7.986143326869911592311018799088, −7.56363556880996454325480902808, −7.11519169640077653996075052143, −7.10228689012684436915297422111, −6.22512540844802711355733326436, −5.49812720141374618627204639874, −5.06162779077396476297767527010, −5.05039575756716157407313005772, −4.26109177807554697867478453567, −3.61816846242806993735719031260, −2.86740551482613276423128265527, −2.60098483233759492199007751435, −1.60049408733384802633414554803, −0.790133013805134540606127223683,
0.790133013805134540606127223683, 1.60049408733384802633414554803, 2.60098483233759492199007751435, 2.86740551482613276423128265527, 3.61816846242806993735719031260, 4.26109177807554697867478453567, 5.05039575756716157407313005772, 5.06162779077396476297767527010, 5.49812720141374618627204639874, 6.22512540844802711355733326436, 7.10228689012684436915297422111, 7.11519169640077653996075052143, 7.56363556880996454325480902808, 7.986143326869911592311018799088, 8.396994660749056155037365720496, 8.880575765166552278343172025796, 9.833678509456435057677641150799, 9.898435165927122424821339861481, 10.10741351579027436891973055389, 10.39630201846709653688252958820