L(s) = 1 | − 10·7-s − 6·9-s − 12·11-s + 60·23-s − 12·29-s − 20·37-s − 20·43-s + 51·49-s − 180·53-s + 60·63-s + 140·67-s + 84·71-s + 120·77-s + 148·79-s − 45·81-s + 72·99-s + 300·107-s − 172·109-s − 180·113-s − 134·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + ⋯ |
L(s) = 1 | − 1.42·7-s − 2/3·9-s − 1.09·11-s + 2.60·23-s − 0.413·29-s − 0.540·37-s − 0.465·43-s + 1.04·49-s − 3.39·53-s + 0.952·63-s + 2.08·67-s + 1.18·71-s + 1.55·77-s + 1.87·79-s − 5/9·81-s + 8/11·99-s + 2.80·107-s − 1.57·109-s − 1.59·113-s − 1.10·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + ⋯ |
Λ(s)=(=(490000s/2ΓC(s)2L(s)Λ(3−s)
Λ(s)=(=(490000s/2ΓC(s+1)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
490000
= 24⋅54⋅72
|
Sign: |
1
|
Analytic conductor: |
363.802 |
Root analytic conductor: |
4.36733 |
Motivic weight: |
2 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 490000, ( :1,1), 1)
|
Particular Values
L(23) |
≈ |
0.7206320039 |
L(21) |
≈ |
0.7206320039 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | | 1 |
| 7 | C2 | 1+10T+p2T2 |
good | 3 | C22 | 1+2pT2+p4T4 |
| 11 | C2 | (1+6T+p2T2)2 |
| 13 | C22 | 1−314T2+p4T4 |
| 17 | C22 | 1−194T2+p4T4 |
| 19 | C22 | 1−122T2+p4T4 |
| 23 | C2 | (1−30T+p2T2)2 |
| 29 | C2 | (1+6T+p2T2)2 |
| 31 | C1×C1 | (1−pT)2(1+pT)2 |
| 37 | C2 | (1+10T+p2T2)2 |
| 41 | C22 | 1−962T2+p4T4 |
| 43 | C2 | (1+10T+p2T2)2 |
| 47 | C22 | 1−4034T2+p4T4 |
| 53 | C2 | (1+90T+p2T2)2 |
| 59 | C22 | 1−6362T2+p4T4 |
| 61 | C22 | 1−6842T2+p4T4 |
| 67 | C2 | (1−70T+p2T2)2 |
| 71 | C2 | (1−42T+p2T2)2 |
| 73 | C22 | 1+958T2+p4T4 |
| 79 | C2 | (1−74T+p2T2)2 |
| 83 | C22 | 1−9722T2+p4T4 |
| 89 | C22 | 1+5758T2+p4T4 |
| 97 | C22 | 1−12674T2+p4T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.41420024668871922543861910060, −10.08640556090955697077195067890, −9.364547582152469431964703419546, −9.363561929688620917098301921427, −8.881156682705261317730567432822, −8.280560916387947572423297840105, −7.85655169522380451117815198673, −7.45930217300974876017871829678, −6.72101177506260987954449214119, −6.61187312938593199805243495832, −6.13720540228307089824412761221, −5.27735564687474710607835416155, −5.21426099884037038524693684078, −4.68977052231077674445650292227, −3.59388808893838526577584980523, −3.44493452046416911712917310800, −2.78343822597224295464291830564, −2.42524437496801564336014123283, −1.28970954383693666403895442675, −0.31372547562723234750719186747,
0.31372547562723234750719186747, 1.28970954383693666403895442675, 2.42524437496801564336014123283, 2.78343822597224295464291830564, 3.44493452046416911712917310800, 3.59388808893838526577584980523, 4.68977052231077674445650292227, 5.21426099884037038524693684078, 5.27735564687474710607835416155, 6.13720540228307089824412761221, 6.61187312938593199805243495832, 6.72101177506260987954449214119, 7.45930217300974876017871829678, 7.85655169522380451117815198673, 8.280560916387947572423297840105, 8.881156682705261317730567432822, 9.363561929688620917098301921427, 9.364547582152469431964703419546, 10.08640556090955697077195067890, 10.41420024668871922543861910060