Properties

Label 4-700e2-1.1-c2e2-0-1
Degree 44
Conductor 490000490000
Sign 11
Analytic cond. 363.802363.802
Root an. cond. 4.367334.36733
Motivic weight 22
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 00

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 10·7-s − 6·9-s − 12·11-s + 60·23-s − 12·29-s − 20·37-s − 20·43-s + 51·49-s − 180·53-s + 60·63-s + 140·67-s + 84·71-s + 120·77-s + 148·79-s − 45·81-s + 72·99-s + 300·107-s − 172·109-s − 180·113-s − 134·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + ⋯
L(s)  = 1  − 1.42·7-s − 2/3·9-s − 1.09·11-s + 2.60·23-s − 0.413·29-s − 0.540·37-s − 0.465·43-s + 1.04·49-s − 3.39·53-s + 0.952·63-s + 2.08·67-s + 1.18·71-s + 1.55·77-s + 1.87·79-s − 5/9·81-s + 8/11·99-s + 2.80·107-s − 1.57·109-s − 1.59·113-s − 1.10·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + ⋯

Functional equation

Λ(s)=(490000s/2ΓC(s)2L(s)=(Λ(3s)\begin{aligned}\Lambda(s)=\mathstrut & 490000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}
Λ(s)=(490000s/2ΓC(s+1)2L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 490000 ^{s/2} \, \Gamma_{\C}(s+1)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 44
Conductor: 490000490000    =    2454722^{4} \cdot 5^{4} \cdot 7^{2}
Sign: 11
Analytic conductor: 363.802363.802
Root analytic conductor: 4.367334.36733
Motivic weight: 22
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 00
Selberg data: (4, 490000, ( :1,1), 1)(4,\ 490000,\ (\ :1, 1),\ 1)

Particular Values

L(32)L(\frac{3}{2}) \approx 0.72063200390.7206320039
L(12)L(\frac12) \approx 0.72063200390.7206320039
L(2)L(2) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad2 1 1
5 1 1
7C2C_2 1+10T+p2T2 1 + 10 T + p^{2} T^{2}
good3C22C_2^2 1+2pT2+p4T4 1 + 2 p T^{2} + p^{4} T^{4}
11C2C_2 (1+6T+p2T2)2 ( 1 + 6 T + p^{2} T^{2} )^{2}
13C22C_2^2 1314T2+p4T4 1 - 314 T^{2} + p^{4} T^{4}
17C22C_2^2 1194T2+p4T4 1 - 194 T^{2} + p^{4} T^{4}
19C22C_2^2 1122T2+p4T4 1 - 122 T^{2} + p^{4} T^{4}
23C2C_2 (130T+p2T2)2 ( 1 - 30 T + p^{2} T^{2} )^{2}
29C2C_2 (1+6T+p2T2)2 ( 1 + 6 T + p^{2} T^{2} )^{2}
31C1C_1×\timesC1C_1 (1pT)2(1+pT)2 ( 1 - p T )^{2}( 1 + p T )^{2}
37C2C_2 (1+10T+p2T2)2 ( 1 + 10 T + p^{2} T^{2} )^{2}
41C22C_2^2 1962T2+p4T4 1 - 962 T^{2} + p^{4} T^{4}
43C2C_2 (1+10T+p2T2)2 ( 1 + 10 T + p^{2} T^{2} )^{2}
47C22C_2^2 14034T2+p4T4 1 - 4034 T^{2} + p^{4} T^{4}
53C2C_2 (1+90T+p2T2)2 ( 1 + 90 T + p^{2} T^{2} )^{2}
59C22C_2^2 16362T2+p4T4 1 - 6362 T^{2} + p^{4} T^{4}
61C22C_2^2 16842T2+p4T4 1 - 6842 T^{2} + p^{4} T^{4}
67C2C_2 (170T+p2T2)2 ( 1 - 70 T + p^{2} T^{2} )^{2}
71C2C_2 (142T+p2T2)2 ( 1 - 42 T + p^{2} T^{2} )^{2}
73C22C_2^2 1+958T2+p4T4 1 + 958 T^{2} + p^{4} T^{4}
79C2C_2 (174T+p2T2)2 ( 1 - 74 T + p^{2} T^{2} )^{2}
83C22C_2^2 19722T2+p4T4 1 - 9722 T^{2} + p^{4} T^{4}
89C22C_2^2 1+5758T2+p4T4 1 + 5758 T^{2} + p^{4} T^{4}
97C22C_2^2 112674T2+p4T4 1 - 12674 T^{2} + p^{4} T^{4}
show more
show less
   L(s)=p j=14(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.41420024668871922543861910060, −10.08640556090955697077195067890, −9.364547582152469431964703419546, −9.363561929688620917098301921427, −8.881156682705261317730567432822, −8.280560916387947572423297840105, −7.85655169522380451117815198673, −7.45930217300974876017871829678, −6.72101177506260987954449214119, −6.61187312938593199805243495832, −6.13720540228307089824412761221, −5.27735564687474710607835416155, −5.21426099884037038524693684078, −4.68977052231077674445650292227, −3.59388808893838526577584980523, −3.44493452046416911712917310800, −2.78343822597224295464291830564, −2.42524437496801564336014123283, −1.28970954383693666403895442675, −0.31372547562723234750719186747, 0.31372547562723234750719186747, 1.28970954383693666403895442675, 2.42524437496801564336014123283, 2.78343822597224295464291830564, 3.44493452046416911712917310800, 3.59388808893838526577584980523, 4.68977052231077674445650292227, 5.21426099884037038524693684078, 5.27735564687474710607835416155, 6.13720540228307089824412761221, 6.61187312938593199805243495832, 6.72101177506260987954449214119, 7.45930217300974876017871829678, 7.85655169522380451117815198673, 8.280560916387947572423297840105, 8.881156682705261317730567432822, 9.363561929688620917098301921427, 9.364547582152469431964703419546, 10.08640556090955697077195067890, 10.41420024668871922543861910060

Graph of the ZZ-function along the critical line