L(s) = 1 | − 10·9-s + 56·11-s − 16·19-s − 348·29-s − 304·31-s + 100·41-s − 49·49-s + 544·59-s − 1.32e3·61-s − 1.76e3·71-s + 1.20e3·79-s − 629·81-s − 1.39e3·89-s − 560·99-s + 708·101-s + 292·109-s − 310·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 2.33e3·169-s + ⋯ |
L(s) = 1 | − 0.370·9-s + 1.53·11-s − 0.193·19-s − 2.22·29-s − 1.76·31-s + 0.380·41-s − 1/7·49-s + 1.20·59-s − 2.77·61-s − 2.94·71-s + 1.70·79-s − 0.862·81-s − 1.66·89-s − 0.568·99-s + 0.697·101-s + 0.256·109-s − 0.232·121-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 0.000549·149-s + 0.000538·151-s + 0.000508·157-s + 0.000480·163-s + 0.000463·167-s − 1.06·169-s + ⋯ |
Λ(s)=(=(490000s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(490000s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
490000
= 24⋅54⋅72
|
Sign: |
1
|
Analytic conductor: |
1705.80 |
Root analytic conductor: |
6.42661 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 490000, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
1.218195251 |
L(21) |
≈ |
1.218195251 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | | 1 |
| 7 | C2 | 1+p2T2 |
good | 3 | C22 | 1+10T2+p6T4 |
| 11 | C2 | (1−28T+p3T2)2 |
| 13 | C22 | 1+2330T2+p6T4 |
| 17 | C22 | 1−7710T2+p6T4 |
| 19 | C2 | (1+8T+p3T2)2 |
| 23 | C22 | 1−7950T2+p6T4 |
| 29 | C2 | (1+6pT+p3T2)2 |
| 31 | C2 | (1+152T+p3T2)2 |
| 37 | C22 | 1−17206T2+p6T4 |
| 41 | C2 | (1−50T+p3T2)2 |
| 43 | C22 | 1−2198T2+p6T4 |
| 47 | C22 | 1−120030T2+p6T4 |
| 53 | C22 | 1+27146T2+p6T4 |
| 59 | C2 | (1−272T+p3T2)2 |
| 61 | C2 | (1+662T+p3T2)2 |
| 67 | C22 | 1+165850T2+p6T4 |
| 71 | C2 | (1+880T+p3T2)2 |
| 73 | C22 | 1−370990T2+p6T4 |
| 79 | C2 | (1−600T+p3T2)2 |
| 83 | C22 | 1−754198T2+p6T4 |
| 89 | C2 | (1+698T+p3T2)2 |
| 97 | C22 | 1−1256830T2+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.55238199537600222012803758495, −9.499454328805588279025131180738, −9.348723809694728938475439172381, −9.228259159953760951262975320245, −8.572871489071158700617674233676, −8.214284632426944496340882235301, −7.47864079344163137652058518185, −7.24808176302326686493362470518, −6.87544597511449857560571261948, −6.07221787033952056893091077214, −5.90827927603145375737447094643, −5.46654608291612254616942162197, −4.70028353381260808266200760309, −4.23532740230581283573488280724, −3.67382707712152931985444751142, −3.35776654549675455023011525330, −2.53256220596016406188806003134, −1.72200907760468139473499418965, −1.42815544350459708405149936829, −0.30524584098653598233976479280,
0.30524584098653598233976479280, 1.42815544350459708405149936829, 1.72200907760468139473499418965, 2.53256220596016406188806003134, 3.35776654549675455023011525330, 3.67382707712152931985444751142, 4.23532740230581283573488280724, 4.70028353381260808266200760309, 5.46654608291612254616942162197, 5.90827927603145375737447094643, 6.07221787033952056893091077214, 6.87544597511449857560571261948, 7.24808176302326686493362470518, 7.47864079344163137652058518185, 8.214284632426944496340882235301, 8.572871489071158700617674233676, 9.228259159953760951262975320245, 9.348723809694728938475439172381, 9.499454328805588279025131180738, 10.55238199537600222012803758495