L(s) = 1 | + 14·7-s + 114·9-s + 36·11-s − 1.47e3·23-s − 1.69e3·29-s − 4.77e3·37-s + 5.02e3·43-s − 2.20e3·49-s + 540·53-s + 1.59e3·63-s − 4.90e3·67-s − 6.30e3·71-s + 504·77-s − 7.96e3·79-s + 6.43e3·81-s + 4.10e3·99-s + 2.58e4·107-s − 1.40e4·109-s − 3.74e4·113-s − 2.83e4·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + ⋯ |
L(s) = 1 | + 2/7·7-s + 1.40·9-s + 0.297·11-s − 2.79·23-s − 2.01·29-s − 3.48·37-s + 2.71·43-s − 0.918·49-s + 0.192·53-s + 0.402·63-s − 1.09·67-s − 1.24·71-s + 0.0850·77-s − 1.27·79-s + 0.980·81-s + 0.418·99-s + 2.26·107-s − 1.18·109-s − 2.93·113-s − 1.93·121-s + 6.20e−5·127-s + 5.82e−5·131-s + 5.32e−5·137-s + 5.17e−5·139-s + 4.50e−5·149-s + 4.38e−5·151-s + 4.05e−5·157-s + ⋯ |
Λ(s)=(=(490000s/2ΓC(s)2L(s)Λ(5−s)
Λ(s)=(=(490000s/2ΓC(s+2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
490000
= 24⋅54⋅72
|
Sign: |
1
|
Analytic conductor: |
5235.82 |
Root analytic conductor: |
8.50640 |
Motivic weight: |
4 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 490000, ( :2,2), 1)
|
Particular Values
L(25) |
≈ |
0.8761383531 |
L(21) |
≈ |
0.8761383531 |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | | 1 |
| 7 | C2 | 1−2pT+p4T2 |
good | 3 | C22 | 1−38pT2+p8T4 |
| 11 | C2 | (1−18T+p4T2)2 |
| 13 | C22 | 1−39794T2+p8T4 |
| 17 | C22 | 1+5758T2+p8T4 |
| 19 | C22 | 1−252530T2+p8T4 |
| 23 | C2 | (1+738T+p4T2)2 |
| 29 | C2 | (1+846T+p4T2)2 |
| 31 | C22 | 1−492290T2+p8T4 |
| 37 | C2 | (1+2386T+p4T2)2 |
| 41 | C22 | 1−1634p2T2+p8T4 |
| 43 | C2 | (1−2510T+p4T2)2 |
| 47 | C22 | 1+1859710T2+p8T4 |
| 53 | C2 | (1−270T+p4T2)2 |
| 59 | C22 | 1−14384690T2+p8T4 |
| 61 | C22 | 1+14450830T2+p8T4 |
| 67 | C2 | (1+2450T+p4T2)2 |
| 71 | C2 | (1+3150T+p4T2)2 |
| 73 | C22 | 1−56740994T2+p8T4 |
| 79 | C2 | (1+3982T+p4T2)2 |
| 83 | C22 | 1−69825650T2+p8T4 |
| 89 | C22 | 1−67615490T2+p8T4 |
| 97 | C22 | 1−18761474T2+p8T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.27167720455696130526906975223, −9.627951553464494981825681262773, −9.142620243451089958744362312243, −9.040611583774664931166516435179, −8.135345277173917889542950938711, −8.004175492190739363139963866269, −7.38518943511079337723985823732, −7.10152686186682762229001942178, −6.69577614957683683232954837513, −5.83392955774283053011651104565, −5.80244210336991880678015217983, −5.15221363714083536214505316019, −4.33652625458475920103268608635, −4.15675712772178906034254704347, −3.72644517934444536430403603759, −3.06608341267545561159244261436, −1.94486211140506949202479301456, −1.91608973385211524446509398848, −1.28385552421691757621432388207, −0.21604643499578151548730473781,
0.21604643499578151548730473781, 1.28385552421691757621432388207, 1.91608973385211524446509398848, 1.94486211140506949202479301456, 3.06608341267545561159244261436, 3.72644517934444536430403603759, 4.15675712772178906034254704347, 4.33652625458475920103268608635, 5.15221363714083536214505316019, 5.80244210336991880678015217983, 5.83392955774283053011651104565, 6.69577614957683683232954837513, 7.10152686186682762229001942178, 7.38518943511079337723985823732, 8.004175492190739363139963866269, 8.135345277173917889542950938711, 9.040611583774664931166516435179, 9.142620243451089958744362312243, 9.627951553464494981825681262773, 10.27167720455696130526906975223