L(s) = 1 | + 4·3-s − 2·5-s + 7·9-s + 4·11-s − 8·15-s + 8·23-s − 3·25-s + 4·27-s + 16·33-s + 6·37-s − 14·45-s + 6·49-s − 4·53-s − 8·55-s + 12·59-s + 4·67-s + 32·69-s + 24·71-s − 12·75-s − 8·81-s − 26·89-s + 6·97-s + 28·99-s − 16·103-s + 24·111-s − 10·113-s − 16·115-s + ⋯ |
L(s) = 1 | + 2.30·3-s − 0.894·5-s + 7/3·9-s + 1.20·11-s − 2.06·15-s + 1.66·23-s − 3/5·25-s + 0.769·27-s + 2.78·33-s + 0.986·37-s − 2.08·45-s + 6/7·49-s − 0.549·53-s − 1.07·55-s + 1.56·59-s + 0.488·67-s + 3.85·69-s + 2.84·71-s − 1.38·75-s − 8/9·81-s − 2.75·89-s + 0.609·97-s + 2.81·99-s − 1.57·103-s + 2.27·111-s − 0.940·113-s − 1.49·115-s + ⋯ |
Λ(s)=(=(495616s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(495616s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
495616
= 212⋅112
|
Sign: |
1
|
Analytic conductor: |
31.6009 |
Root analytic conductor: |
2.37096 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 495616, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
4.040342453 |
L(21) |
≈ |
4.040342453 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 11 | C2 | 1−4T+pT2 |
good | 3 | C2×C2 | (1−pT+pT2)(1−T+pT2) |
| 5 | C2×C2 | (1−T+pT2)(1+3T+pT2) |
| 7 | C22 | 1−6T2+p2T4 |
| 13 | C22 | 1−6T2+p2T4 |
| 17 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 19 | C22 | 1+18T2+p2T4 |
| 23 | C2×C2 | (1−7T+pT2)(1−T+pT2) |
| 29 | C22 | 1+6T2+p2T4 |
| 31 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 37 | C2×C2 | (1−9T+pT2)(1+3T+pT2) |
| 41 | C22 | 1−30T2+p2T4 |
| 43 | C22 | 1+54T2+p2T4 |
| 47 | C2 | (1+pT2)2 |
| 53 | C2×C2 | (1−6T+pT2)(1+10T+pT2) |
| 59 | C2×C2 | (1−7T+pT2)(1−5T+pT2) |
| 61 | C22 | 1−58T2+p2T4 |
| 67 | C2×C2 | (1−9T+pT2)(1+5T+pT2) |
| 71 | C2×C2 | (1−15T+pT2)(1−9T+pT2) |
| 73 | C22 | 1+66T2+p2T4 |
| 79 | C22 | 1−114T2+p2T4 |
| 83 | C22 | 1+86T2+p2T4 |
| 89 | C2×C2 | (1+9T+pT2)(1+17T+pT2) |
| 97 | C2 | (1−3T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.527834757835193726747029498818, −8.130905320346842230293799253614, −7.80880047675026696994038925633, −7.38343675003183133018650001814, −6.75675677658737613905670147750, −6.62082714324451009339742326913, −5.66163434916591204950710996791, −5.16707365592353737946128191517, −4.30971861340138374132199477742, −3.95501966037150973513946344449, −3.64483685966352076698862940684, −3.01131321872163071924120162853, −2.60939963678351254594850012675, −1.92256304918733355678144886727, −0.989457762310743048355362377137,
0.989457762310743048355362377137, 1.92256304918733355678144886727, 2.60939963678351254594850012675, 3.01131321872163071924120162853, 3.64483685966352076698862940684, 3.95501966037150973513946344449, 4.30971861340138374132199477742, 5.16707365592353737946128191517, 5.66163434916591204950710996791, 6.62082714324451009339742326913, 6.75675677658737613905670147750, 7.38343675003183133018650001814, 7.80880047675026696994038925633, 8.130905320346842230293799253614, 8.527834757835193726747029498818