L(s) = 1 | − 10·5-s + 7·9-s + 24·13-s + 28·17-s + 25·25-s + 48·29-s − 102·37-s + 80·41-s − 70·45-s + 54·49-s − 92·53-s + 88·61-s − 240·65-s + 88·73-s − 32·81-s − 280·85-s − 178·89-s + 370·97-s − 132·101-s + 364·109-s + 314·113-s + 168·117-s − 11·121-s + 250·125-s + 127-s + 131-s + 137-s + ⋯ |
L(s) = 1 | − 2·5-s + 7/9·9-s + 1.84·13-s + 1.64·17-s + 25-s + 1.65·29-s − 2.75·37-s + 1.95·41-s − 1.55·45-s + 1.10·49-s − 1.73·53-s + 1.44·61-s − 3.69·65-s + 1.20·73-s − 0.395·81-s − 3.29·85-s − 2·89-s + 3.81·97-s − 1.30·101-s + 3.33·109-s + 2.77·113-s + 1.43·117-s − 0.0909·121-s + 2·125-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + ⋯ |
Λ(s)=(=(495616s/2ΓC(s)2L(s)Λ(3−s)
Λ(s)=(=(495616s/2ΓC(s+1)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
495616
= 212⋅112
|
Sign: |
1
|
Analytic conductor: |
367.972 |
Root analytic conductor: |
4.37979 |
Motivic weight: |
2 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 495616, ( :1,1), 1)
|
Particular Values
L(23) |
≈ |
2.098978576 |
L(21) |
≈ |
2.098978576 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 11 | C2 | 1+pT2 |
good | 3 | C2 | (1−5T+p2T2)(1+5T+p2T2) |
| 5 | C2 | (1+pT+p2T2)2 |
| 7 | C22 | 1−54T2+p4T4 |
| 13 | C2 | (1−12T+p2T2)2 |
| 17 | C2 | (1−14T+p2T2)2 |
| 19 | C22 | 1−18T2+p4T4 |
| 23 | C22 | 1−1047T2+p4T4 |
| 29 | C2 | (1−24T+p2T2)2 |
| 31 | C22 | 1−591T2+p4T4 |
| 37 | C2 | (1+51T+p2T2)2 |
| 41 | C2 | (1−40T+p2T2)2 |
| 43 | C22 | 1−134T2+p4T4 |
| 47 | C22 | 1+4206T2+p4T4 |
| 53 | C2 | (1+46T+p2T2)2 |
| 59 | C22 | 1−5631T2+p4T4 |
| 61 | C2 | (1−44T+p2T2)2 |
| 67 | C22 | 1−4127T2+p4T4 |
| 71 | C22 | 1−6903T2+p4T4 |
| 73 | C2 | (1−44T+p2T2)2 |
| 79 | C22 | 1−12086T2+p4T4 |
| 83 | C22 | 1+2106T2+p4T4 |
| 89 | C2 | (1+pT+p2T2)2 |
| 97 | C2 | (1−185T+p2T2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.54094764262135898028814079720, −9.989946706439953340126475525675, −9.807089051928401843406539613529, −8.892381058138600834257333797296, −8.696032581055963454742862323237, −8.174679397039434925181927841747, −7.948321026391900012241550503650, −7.44324416771989257947224299819, −7.09183017479897049369334981027, −6.63033594887199001776033553500, −5.86578561939854134785483228241, −5.69660184191224083411928012484, −4.72215167866739939236819105737, −4.47376745861606238728966597585, −3.78886951960443329061591190523, −3.46599465655791031829510241732, −3.24193971221921742996838967101, −2.02514680299661315802694551036, −1.13120180409472766606793131913, −0.63304703990025272971206086134,
0.63304703990025272971206086134, 1.13120180409472766606793131913, 2.02514680299661315802694551036, 3.24193971221921742996838967101, 3.46599465655791031829510241732, 3.78886951960443329061591190523, 4.47376745861606238728966597585, 4.72215167866739939236819105737, 5.69660184191224083411928012484, 5.86578561939854134785483228241, 6.63033594887199001776033553500, 7.09183017479897049369334981027, 7.44324416771989257947224299819, 7.948321026391900012241550503650, 8.174679397039434925181927841747, 8.696032581055963454742862323237, 8.892381058138600834257333797296, 9.807089051928401843406539613529, 9.989946706439953340126475525675, 10.54094764262135898028814079720