Properties

Label 4-704e2-1.1-c2e2-0-3
Degree $4$
Conductor $495616$
Sign $1$
Analytic cond. $367.972$
Root an. cond. $4.37979$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 10·5-s + 7·9-s + 24·13-s + 28·17-s + 25·25-s + 48·29-s − 102·37-s + 80·41-s − 70·45-s + 54·49-s − 92·53-s + 88·61-s − 240·65-s + 88·73-s − 32·81-s − 280·85-s − 178·89-s + 370·97-s − 132·101-s + 364·109-s + 314·113-s + 168·117-s − 11·121-s + 250·125-s + 127-s + 131-s + 137-s + ⋯
L(s)  = 1  − 2·5-s + 7/9·9-s + 1.84·13-s + 1.64·17-s + 25-s + 1.65·29-s − 2.75·37-s + 1.95·41-s − 1.55·45-s + 1.10·49-s − 1.73·53-s + 1.44·61-s − 3.69·65-s + 1.20·73-s − 0.395·81-s − 3.29·85-s − 2·89-s + 3.81·97-s − 1.30·101-s + 3.33·109-s + 2.77·113-s + 1.43·117-s − 0.0909·121-s + 2·125-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 495616 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 495616 ^{s/2} \, \Gamma_{\C}(s+1)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(495616\)    =    \(2^{12} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(367.972\)
Root analytic conductor: \(4.37979\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 495616,\ (\ :1, 1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(2.098978576\)
\(L(\frac12)\) \(\approx\) \(2.098978576\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
11$C_2$ \( 1 + p T^{2} \)
good3$C_2$ \( ( 1 - 5 T + p^{2} T^{2} )( 1 + 5 T + p^{2} T^{2} ) \)
5$C_2$ \( ( 1 + p T + p^{2} T^{2} )^{2} \)
7$C_2^2$ \( 1 - 54 T^{2} + p^{4} T^{4} \)
13$C_2$ \( ( 1 - 12 T + p^{2} T^{2} )^{2} \)
17$C_2$ \( ( 1 - 14 T + p^{2} T^{2} )^{2} \)
19$C_2^2$ \( 1 - 18 T^{2} + p^{4} T^{4} \)
23$C_2^2$ \( 1 - 1047 T^{2} + p^{4} T^{4} \)
29$C_2$ \( ( 1 - 24 T + p^{2} T^{2} )^{2} \)
31$C_2^2$ \( 1 - 591 T^{2} + p^{4} T^{4} \)
37$C_2$ \( ( 1 + 51 T + p^{2} T^{2} )^{2} \)
41$C_2$ \( ( 1 - 40 T + p^{2} T^{2} )^{2} \)
43$C_2^2$ \( 1 - 134 T^{2} + p^{4} T^{4} \)
47$C_2^2$ \( 1 + 4206 T^{2} + p^{4} T^{4} \)
53$C_2$ \( ( 1 + 46 T + p^{2} T^{2} )^{2} \)
59$C_2^2$ \( 1 - 5631 T^{2} + p^{4} T^{4} \)
61$C_2$ \( ( 1 - 44 T + p^{2} T^{2} )^{2} \)
67$C_2^2$ \( 1 - 4127 T^{2} + p^{4} T^{4} \)
71$C_2^2$ \( 1 - 6903 T^{2} + p^{4} T^{4} \)
73$C_2$ \( ( 1 - 44 T + p^{2} T^{2} )^{2} \)
79$C_2^2$ \( 1 - 12086 T^{2} + p^{4} T^{4} \)
83$C_2^2$ \( 1 + 2106 T^{2} + p^{4} T^{4} \)
89$C_2$ \( ( 1 + p T + p^{2} T^{2} )^{2} \)
97$C_2$ \( ( 1 - 185 T + p^{2} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.54094764262135898028814079720, −9.989946706439953340126475525675, −9.807089051928401843406539613529, −8.892381058138600834257333797296, −8.696032581055963454742862323237, −8.174679397039434925181927841747, −7.948321026391900012241550503650, −7.44324416771989257947224299819, −7.09183017479897049369334981027, −6.63033594887199001776033553500, −5.86578561939854134785483228241, −5.69660184191224083411928012484, −4.72215167866739939236819105737, −4.47376745861606238728966597585, −3.78886951960443329061591190523, −3.46599465655791031829510241732, −3.24193971221921742996838967101, −2.02514680299661315802694551036, −1.13120180409472766606793131913, −0.63304703990025272971206086134, 0.63304703990025272971206086134, 1.13120180409472766606793131913, 2.02514680299661315802694551036, 3.24193971221921742996838967101, 3.46599465655791031829510241732, 3.78886951960443329061591190523, 4.47376745861606238728966597585, 4.72215167866739939236819105737, 5.69660184191224083411928012484, 5.86578561939854134785483228241, 6.63033594887199001776033553500, 7.09183017479897049369334981027, 7.44324416771989257947224299819, 7.948321026391900012241550503650, 8.174679397039434925181927841747, 8.696032581055963454742862323237, 8.892381058138600834257333797296, 9.807089051928401843406539613529, 9.989946706439953340126475525675, 10.54094764262135898028814079720

Graph of the $Z$-function along the critical line