L(s) = 1 | + 8·11-s + 8·17-s − 25-s + 4·41-s + 6·49-s + 24·59-s − 16·67-s − 4·73-s − 16·83-s − 12·89-s + 12·97-s + 16·107-s − 16·113-s + 30·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 10·169-s + 173-s + 179-s + 181-s + ⋯ |
L(s) = 1 | + 2.41·11-s + 1.94·17-s − 1/5·25-s + 0.624·41-s + 6/7·49-s + 3.12·59-s − 1.95·67-s − 0.468·73-s − 1.75·83-s − 1.27·89-s + 1.21·97-s + 1.54·107-s − 1.50·113-s + 2.72·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.769·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 518400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 518400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.594869766\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.594869766\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | | \( 1 \) |
| 3 | | \( 1 \) |
| 5 | $C_2$ | \( 1 + T^{2} \) |
good | 7 | $C_2^2$ | \( 1 - 6 T^{2} + p^{2} T^{4} \) |
| 11 | $C_2$$\times$$C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 - 2 T + p T^{2} ) \) |
| 13 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 17 | $C_2$$\times$$C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \) |
| 19 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 23 | $C_2^2$ | \( 1 - 34 T^{2} + p^{2} T^{4} \) |
| 29 | $C_2^2$ | \( 1 + 10 T^{2} + p^{2} T^{4} \) |
| 31 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 37 | $C_2^2$ | \( 1 + 26 T^{2} + p^{2} T^{4} \) |
| 41 | $C_2$ | \( ( 1 - 2 T + p T^{2} )^{2} \) |
| 43 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 47 | $C_2^2$ | \( 1 - 34 T^{2} + p^{2} T^{4} \) |
| 53 | $C_2^2$ | \( 1 + 26 T^{2} + p^{2} T^{4} \) |
| 59 | $C_2$$\times$$C_2$ | \( ( 1 - 14 T + p T^{2} )( 1 - 10 T + p T^{2} ) \) |
| 61 | $C_2^2$ | \( 1 - 58 T^{2} + p^{2} T^{4} \) |
| 67 | $C_2$$\times$$C_2$ | \( ( 1 + 4 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) |
| 71 | $C_2^2$ | \( 1 - 50 T^{2} + p^{2} T^{4} \) |
| 73 | $C_2$ | \( ( 1 + 2 T + p T^{2} )^{2} \) |
| 79 | $C_2^2$ | \( 1 - 34 T^{2} + p^{2} T^{4} \) |
| 83 | $C_2$$\times$$C_2$ | \( ( 1 + p T^{2} )( 1 + 16 T + p T^{2} ) \) |
| 89 | $C_2$$\times$$C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 14 T + p T^{2} ) \) |
| 97 | $C_2$$\times$$C_2$ | \( ( 1 - 14 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.637183607272096939041522718578, −8.055936125638172912918523317298, −7.53285444880737825040699345784, −7.04120410706522569023118865356, −6.82656238658900225396710793459, −6.07453339059603221362143047851, −5.80984444196485509926750369844, −5.38259021828896175138486804452, −4.54897001219185976555021784050, −4.11447502173470346223497943593, −3.65413459317101541191143473421, −3.20221457718566508041742152736, −2.35796348784396570506376666502, −1.43154763125065325809858797524, −0.994637386440521777025373739554,
0.994637386440521777025373739554, 1.43154763125065325809858797524, 2.35796348784396570506376666502, 3.20221457718566508041742152736, 3.65413459317101541191143473421, 4.11447502173470346223497943593, 4.54897001219185976555021784050, 5.38259021828896175138486804452, 5.80984444196485509926750369844, 6.07453339059603221362143047851, 6.82656238658900225396710793459, 7.04120410706522569023118865356, 7.53285444880737825040699345784, 8.055936125638172912918523317298, 8.637183607272096939041522718578