L(s) = 1 | − 3·3-s − 2·5-s + 3·7-s + 4·9-s + 7·11-s − 3·13-s + 6·15-s + 3·17-s − 19-s − 9·21-s − 2·23-s + 3·25-s − 6·27-s − 2·29-s − 5·31-s − 21·33-s − 6·35-s − 16·37-s + 9·39-s − 9·41-s + 4·43-s − 8·45-s + 2·47-s − 4·49-s − 9·51-s + 8·53-s − 14·55-s + ⋯ |
L(s) = 1 | − 1.73·3-s − 0.894·5-s + 1.13·7-s + 4/3·9-s + 2.11·11-s − 0.832·13-s + 1.54·15-s + 0.727·17-s − 0.229·19-s − 1.96·21-s − 0.417·23-s + 3/5·25-s − 1.15·27-s − 0.371·29-s − 0.898·31-s − 3.65·33-s − 1.01·35-s − 2.63·37-s + 1.44·39-s − 1.40·41-s + 0.609·43-s − 1.19·45-s + 0.291·47-s − 4/7·49-s − 1.26·51-s + 1.09·53-s − 1.88·55-s + ⋯ |
Λ(s)=(=(54169600s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(54169600s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
54169600
= 212⋅52⋅232
|
Sign: |
1
|
Analytic conductor: |
3453.90 |
Root analytic conductor: |
7.66615 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 54169600, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C1 | (1+T)2 |
| 23 | C1 | (1+T)2 |
good | 3 | C4 | 1+pT+5T2+p2T3+p2T4 |
| 7 | D4 | 1−3T+13T2−3pT3+p2T4 |
| 11 | D4 | 1−7T+31T2−7pT3+p2T4 |
| 13 | D4 | 1+3T+25T2+3pT3+p2T4 |
| 17 | D4 | 1−3T+7T2−3pT3+p2T4 |
| 19 | D4 | 1+T+9T2+pT3+p2T4 |
| 29 | D4 | 1+2T+46T2+2pT3+p2T4 |
| 31 | D4 | 1+5T+39T2+5pT3+p2T4 |
| 37 | C2 | (1+8T+pT2)2 |
| 41 | D4 | 1+9T+73T2+9pT3+p2T4 |
| 43 | D4 | 1−4T+38T2−4pT3+p2T4 |
| 47 | D4 | 1−2T+82T2−2pT3+p2T4 |
| 53 | D4 | 1−8T+70T2−8pT3+p2T4 |
| 59 | D4 | 1−14T+154T2−14pT3+p2T4 |
| 61 | D4 | 1+5T+47T2+5pT3+p2T4 |
| 67 | C2 | (1−4T+pT2)2 |
| 71 | D4 | 1+29T+349T2+29pT3+p2T4 |
| 73 | D4 | 1−10T+54T2−10pT3+p2T4 |
| 79 | C22 | 1−50T2+p2T4 |
| 83 | D4 | 1+8T+130T2+8pT3+p2T4 |
| 89 | C2 | (1+pT2)2 |
| 97 | D4 | 1−9T+211T2−9pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.50566752367698501639112375208, −7.18584322510690673768686935598, −7.14667009495707518574667036505, −6.72236717090708343800605199924, −6.32509308048312561714142557207, −5.96002464026647663803941422649, −5.48865571271591317563562964026, −5.35342812878046297551027278564, −4.94001319653524944707158482513, −4.68186054890195905046869141343, −4.01259858580927532142217898112, −3.99542928913818942937158401881, −3.55971082638454320585024823335, −3.13634902836226910176117881554, −2.24340247467640058739608131715, −1.84257208463999278687447181318, −1.35479781565662687111880634573, −1.04293745896348535530588738323, 0, 0,
1.04293745896348535530588738323, 1.35479781565662687111880634573, 1.84257208463999278687447181318, 2.24340247467640058739608131715, 3.13634902836226910176117881554, 3.55971082638454320585024823335, 3.99542928913818942937158401881, 4.01259858580927532142217898112, 4.68186054890195905046869141343, 4.94001319653524944707158482513, 5.35342812878046297551027278564, 5.48865571271591317563562964026, 5.96002464026647663803941422649, 6.32509308048312561714142557207, 6.72236717090708343800605199924, 7.14667009495707518574667036505, 7.18584322510690673768686935598, 7.50566752367698501639112375208