L(s) = 1 | − 3-s − 4-s + 9-s + 12-s + 2·13-s + 16-s + 19-s + 6·25-s − 27-s + 2·31-s − 36-s + 6·37-s − 2·39-s − 8·43-s − 48-s − 10·49-s − 2·52-s − 57-s − 12·61-s − 64-s − 16·67-s − 16·73-s − 6·75-s − 76-s + 2·79-s + 81-s − 2·93-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 1/2·4-s + 1/3·9-s + 0.288·12-s + 0.554·13-s + 1/4·16-s + 0.229·19-s + 6/5·25-s − 0.192·27-s + 0.359·31-s − 1/6·36-s + 0.986·37-s − 0.320·39-s − 1.21·43-s − 0.144·48-s − 1.42·49-s − 0.277·52-s − 0.132·57-s − 1.53·61-s − 1/8·64-s − 1.95·67-s − 1.87·73-s − 0.692·75-s − 0.114·76-s + 0.225·79-s + 1/9·81-s − 0.207·93-s + ⋯ |
Λ(s)=(=(740772s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(740772s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
740772
= 22⋅33⋅193
|
Sign: |
−1
|
Analytic conductor: |
47.2322 |
Root analytic conductor: |
2.62155 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 740772, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+T2 |
| 3 | C1 | 1+T |
| 19 | C1 | 1−T |
good | 5 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 7 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 11 | C22 | 1+10T2+p2T4 |
| 13 | C2×C2 | (1−2T+pT2)(1+pT2) |
| 17 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 23 | C22 | 1+2T2+p2T4 |
| 29 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 31 | C2×C2 | (1−4T+pT2)(1+2T+pT2) |
| 37 | C2×C2 | (1−6T+pT2)(1+pT2) |
| 41 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 43 | C2×C2 | (1−4T+pT2)(1+12T+pT2) |
| 47 | C22 | 1+42T2+p2T4 |
| 53 | C22 | 1+38T2+p2T4 |
| 59 | C22 | 1−30T2+p2T4 |
| 61 | C2×C2 | (1+4T+pT2)(1+8T+pT2) |
| 67 | C2×C2 | (1+4T+pT2)(1+12T+pT2) |
| 71 | C22 | 1−62T2+p2T4 |
| 73 | C2×C2 | (1+6T+pT2)(1+10T+pT2) |
| 79 | C2×C2 | (1−6T+pT2)(1+4T+pT2) |
| 83 | C22 | 1+82T2+p2T4 |
| 89 | C22 | 1−110T2+p2T4 |
| 97 | C2×C2 | (1+6T+pT2)(1+14T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.183543219577224388436904152477, −7.63630335589458345937232249879, −7.14083961353630804979395184532, −6.63476570475728421128822946853, −6.28451854901339919449557531977, −5.77763744585875121435967355110, −5.34110224567434626668185813894, −4.74329972392802860888192543540, −4.46245327973518306899198622211, −3.92046810864675229498181414898, −3.07364753727346617579683991524, −2.90060183359140465290290245010, −1.68407289406377645559105544028, −1.15856078640089366274780288036, 0,
1.15856078640089366274780288036, 1.68407289406377645559105544028, 2.90060183359140465290290245010, 3.07364753727346617579683991524, 3.92046810864675229498181414898, 4.46245327973518306899198622211, 4.74329972392802860888192543540, 5.34110224567434626668185813894, 5.77763744585875121435967355110, 6.28451854901339919449557531977, 6.63476570475728421128822946853, 7.14083961353630804979395184532, 7.63630335589458345937232249879, 8.183543219577224388436904152477