L(s) = 1 | + 4-s − 2·7-s − 6·13-s − 3·16-s − 19-s − 4·25-s − 2·28-s − 6·31-s − 4·37-s − 4·43-s − 3·49-s − 6·52-s + 12·61-s − 7·64-s − 2·67-s − 76-s + 4·79-s + 12·91-s + 18·97-s − 4·100-s − 24·103-s + 14·109-s + 6·112-s − 14·121-s − 6·124-s + 127-s + 131-s + ⋯ |
L(s) = 1 | + 1/2·4-s − 0.755·7-s − 1.66·13-s − 3/4·16-s − 0.229·19-s − 4/5·25-s − 0.377·28-s − 1.07·31-s − 0.657·37-s − 0.609·43-s − 3/7·49-s − 0.832·52-s + 1.53·61-s − 7/8·64-s − 0.244·67-s − 0.114·76-s + 0.450·79-s + 1.25·91-s + 1.82·97-s − 2/5·100-s − 2.36·103-s + 1.34·109-s + 0.566·112-s − 1.27·121-s − 0.538·124-s + 0.0887·127-s + 0.0873·131-s + ⋯ |
Λ(s)=(=(75411s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(75411s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
75411
= 34⋅72⋅19
|
Sign: |
−1
|
Analytic conductor: |
4.80827 |
Root analytic conductor: |
1.48080 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 75411, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 7 | C2 | 1+2T+pT2 |
| 19 | C1×C2 | (1−T)(1+2T+pT2) |
good | 2 | C22 | 1−T2+p2T4 |
| 5 | C22 | 1+4T2+p2T4 |
| 11 | C22 | 1+14T2+p2T4 |
| 13 | C2×C2 | (1+2T+pT2)(1+4T+pT2) |
| 17 | C22 | 1−20T2+p2T4 |
| 23 | C22 | 1+2T2+p2T4 |
| 29 | C22 | 1+38T2+p2T4 |
| 31 | C2×C2 | (1−2T+pT2)(1+8T+pT2) |
| 37 | C2 | (1+2T+pT2)2 |
| 41 | C22 | 1+22T2+p2T4 |
| 43 | C2×C2 | (1−4T+pT2)(1+8T+pT2) |
| 47 | C22 | 1+70T2+p2T4 |
| 53 | C22 | 1+38T2+p2T4 |
| 59 | C22 | 1+22T2+p2T4 |
| 61 | C2×C2 | (1−10T+pT2)(1−2T+pT2) |
| 67 | C2×C2 | (1−2T+pT2)(1+4T+pT2) |
| 71 | C22 | 1+2T2+p2T4 |
| 73 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 79 | C2×C2 | (1−8T+pT2)(1+4T+pT2) |
| 83 | C22 | 1−86T2+p2T4 |
| 89 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 97 | C2×C2 | (1−16T+pT2)(1−2T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.451808115510595304934440107969, −9.284493818243571866566646306503, −8.523866780545975415324122899128, −7.962936558854149882361927378320, −7.33995880204398288349734876353, −7.00108325834014391470111729249, −6.56218917408877805692663255116, −5.91990419890763971288746040554, −5.26463306290841073268659490826, −4.75590964208523306519663302548, −3.97450961899134079626108319531, −3.28792973835471695930734978908, −2.48940279941837917395101269178, −1.91806497648452369136382678113, 0,
1.91806497648452369136382678113, 2.48940279941837917395101269178, 3.28792973835471695930734978908, 3.97450961899134079626108319531, 4.75590964208523306519663302548, 5.26463306290841073268659490826, 5.91990419890763971288746040554, 6.56218917408877805692663255116, 7.00108325834014391470111729249, 7.33995880204398288349734876353, 7.962936558854149882361927378320, 8.523866780545975415324122899128, 9.284493818243571866566646306503, 9.451808115510595304934440107969