Properties

Label 4-7644e2-1.1-c1e2-0-9
Degree $4$
Conductor $58430736$
Sign $1$
Analytic cond. $3725.59$
Root an. cond. $7.81265$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 2·5-s + 3·9-s + 2·11-s + 2·13-s + 4·15-s + 4·17-s + 4·19-s + 8·23-s − 4·25-s − 4·27-s + 8·31-s − 4·33-s + 8·37-s − 4·39-s − 6·41-s − 8·43-s − 6·45-s + 6·47-s − 8·51-s + 20·53-s − 4·55-s − 8·57-s − 26·59-s − 4·61-s − 4·65-s + 20·67-s + ⋯
L(s)  = 1  − 1.15·3-s − 0.894·5-s + 9-s + 0.603·11-s + 0.554·13-s + 1.03·15-s + 0.970·17-s + 0.917·19-s + 1.66·23-s − 4/5·25-s − 0.769·27-s + 1.43·31-s − 0.696·33-s + 1.31·37-s − 0.640·39-s − 0.937·41-s − 1.21·43-s − 0.894·45-s + 0.875·47-s − 1.12·51-s + 2.74·53-s − 0.539·55-s − 1.05·57-s − 3.38·59-s − 0.512·61-s − 0.496·65-s + 2.44·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 58430736 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 58430736 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(58430736\)    =    \(2^{4} \cdot 3^{2} \cdot 7^{4} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(3725.59\)
Root analytic conductor: \(7.81265\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 58430736,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.285113117\)
\(L(\frac12)\) \(\approx\) \(2.285113117\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 + T )^{2} \)
7 \( 1 \)
13$C_1$ \( ( 1 - T )^{2} \)
good5$D_{4}$ \( 1 + 2 T + 8 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
11$D_{4}$ \( 1 - 2 T - 4 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
17$D_{4}$ \( 1 - 4 T + 26 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
19$D_{4}$ \( 1 - 4 T + 30 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
23$D_{4}$ \( 1 - 8 T + 50 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 46 T^{2} + p^{2} T^{4} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
37$D_{4}$ \( 1 - 8 T + 78 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 + 6 T + 88 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
43$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
47$D_{4}$ \( 1 - 6 T + 100 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
59$D_{4}$ \( 1 + 26 T + 284 T^{2} + 26 p T^{3} + p^{2} T^{4} \)
61$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
67$D_{4}$ \( 1 - 20 T + 222 T^{2} - 20 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 - 14 T + 116 T^{2} - 14 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 + 8 T + 54 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 - 8 T + 162 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 - 2 T + 20 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 + 6 T + 160 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + 4 T + 6 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.904696133387382920601185164506, −7.77152843674603387036747726129, −7.16700630810904931642192852650, −7.10452097416777523923980011322, −6.58396165623470241685486679285, −6.41777312565683030939578173483, −5.82412222586304801209055193485, −5.74062457578461743406329773023, −5.12884698935276346411162174747, −5.03078856656000555328252644077, −4.51679823689375048624717539146, −4.16100237133683056497631379124, −3.72352403892414804948529716609, −3.51310115297367884254414380209, −2.95170243566927728413181865760, −2.63205757969519888375762801463, −1.78179794534730876657303852285, −1.35006073233233589063754025141, −0.802092637331039509163911519313, −0.57852670315661870629138675603, 0.57852670315661870629138675603, 0.802092637331039509163911519313, 1.35006073233233589063754025141, 1.78179794534730876657303852285, 2.63205757969519888375762801463, 2.95170243566927728413181865760, 3.51310115297367884254414380209, 3.72352403892414804948529716609, 4.16100237133683056497631379124, 4.51679823689375048624717539146, 5.03078856656000555328252644077, 5.12884698935276346411162174747, 5.74062457578461743406329773023, 5.82412222586304801209055193485, 6.41777312565683030939578173483, 6.58396165623470241685486679285, 7.10452097416777523923980011322, 7.16700630810904931642192852650, 7.77152843674603387036747726129, 7.904696133387382920601185164506

Graph of the $Z$-function along the critical line