L(s) = 1 | − 2·3-s − 2·5-s + 3·9-s + 2·11-s + 2·13-s + 4·15-s + 4·17-s + 4·19-s + 8·23-s − 4·25-s − 4·27-s + 8·31-s − 4·33-s + 8·37-s − 4·39-s − 6·41-s − 8·43-s − 6·45-s + 6·47-s − 8·51-s + 20·53-s − 4·55-s − 8·57-s − 26·59-s − 4·61-s − 4·65-s + 20·67-s + ⋯ |
L(s) = 1 | − 1.15·3-s − 0.894·5-s + 9-s + 0.603·11-s + 0.554·13-s + 1.03·15-s + 0.970·17-s + 0.917·19-s + 1.66·23-s − 4/5·25-s − 0.769·27-s + 1.43·31-s − 0.696·33-s + 1.31·37-s − 0.640·39-s − 0.937·41-s − 1.21·43-s − 0.894·45-s + 0.875·47-s − 1.12·51-s + 2.74·53-s − 0.539·55-s − 1.05·57-s − 3.38·59-s − 0.512·61-s − 0.496·65-s + 2.44·67-s + ⋯ |
Λ(s)=(=(58430736s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(58430736s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
58430736
= 24⋅32⋅74⋅132
|
Sign: |
1
|
Analytic conductor: |
3725.59 |
Root analytic conductor: |
7.81265 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 58430736, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.285113117 |
L(21) |
≈ |
2.285113117 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1 | (1+T)2 |
| 7 | | 1 |
| 13 | C1 | (1−T)2 |
good | 5 | D4 | 1+2T+8T2+2pT3+p2T4 |
| 11 | D4 | 1−2T−4T2−2pT3+p2T4 |
| 17 | D4 | 1−4T+26T2−4pT3+p2T4 |
| 19 | D4 | 1−4T+30T2−4pT3+p2T4 |
| 23 | D4 | 1−8T+50T2−8pT3+p2T4 |
| 29 | C22 | 1+46T2+p2T4 |
| 31 | C2 | (1−4T+pT2)2 |
| 37 | D4 | 1−8T+78T2−8pT3+p2T4 |
| 41 | D4 | 1+6T+88T2+6pT3+p2T4 |
| 43 | C2 | (1+4T+pT2)2 |
| 47 | D4 | 1−6T+100T2−6pT3+p2T4 |
| 53 | C2 | (1−10T+pT2)2 |
| 59 | D4 | 1+26T+284T2+26pT3+p2T4 |
| 61 | C2 | (1+2T+pT2)2 |
| 67 | D4 | 1−20T+222T2−20pT3+p2T4 |
| 71 | D4 | 1−14T+116T2−14pT3+p2T4 |
| 73 | D4 | 1+8T+54T2+8pT3+p2T4 |
| 79 | D4 | 1−8T+162T2−8pT3+p2T4 |
| 83 | D4 | 1−2T+20T2−2pT3+p2T4 |
| 89 | D4 | 1+6T+160T2+6pT3+p2T4 |
| 97 | D4 | 1+4T+6T2+4pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.904696133387382920601185164506, −7.77152843674603387036747726129, −7.16700630810904931642192852650, −7.10452097416777523923980011322, −6.58396165623470241685486679285, −6.41777312565683030939578173483, −5.82412222586304801209055193485, −5.74062457578461743406329773023, −5.12884698935276346411162174747, −5.03078856656000555328252644077, −4.51679823689375048624717539146, −4.16100237133683056497631379124, −3.72352403892414804948529716609, −3.51310115297367884254414380209, −2.95170243566927728413181865760, −2.63205757969519888375762801463, −1.78179794534730876657303852285, −1.35006073233233589063754025141, −0.802092637331039509163911519313, −0.57852670315661870629138675603,
0.57852670315661870629138675603, 0.802092637331039509163911519313, 1.35006073233233589063754025141, 1.78179794534730876657303852285, 2.63205757969519888375762801463, 2.95170243566927728413181865760, 3.51310115297367884254414380209, 3.72352403892414804948529716609, 4.16100237133683056497631379124, 4.51679823689375048624717539146, 5.03078856656000555328252644077, 5.12884698935276346411162174747, 5.74062457578461743406329773023, 5.82412222586304801209055193485, 6.41777312565683030939578173483, 6.58396165623470241685486679285, 7.10452097416777523923980011322, 7.16700630810904931642192852650, 7.77152843674603387036747726129, 7.904696133387382920601185164506