L(s) = 1 | + 2·3-s − 4-s + 3·9-s − 2·12-s − 6·13-s + 16-s − 4·17-s + 8·23-s + 6·25-s + 4·27-s − 20·29-s − 3·36-s − 12·39-s + 8·43-s + 2·48-s + 10·49-s − 8·51-s + 6·52-s − 12·53-s + 4·61-s − 64-s + 4·68-s + 16·69-s + 12·75-s + 5·81-s − 40·87-s − 8·92-s + ⋯ |
L(s) = 1 | + 1.15·3-s − 1/2·4-s + 9-s − 0.577·12-s − 1.66·13-s + 1/4·16-s − 0.970·17-s + 1.66·23-s + 6/5·25-s + 0.769·27-s − 3.71·29-s − 1/2·36-s − 1.92·39-s + 1.21·43-s + 0.288·48-s + 10/7·49-s − 1.12·51-s + 0.832·52-s − 1.64·53-s + 0.512·61-s − 1/8·64-s + 0.485·68-s + 1.92·69-s + 1.38·75-s + 5/9·81-s − 4.28·87-s − 0.834·92-s + ⋯ |
Λ(s)=(=(6084s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(6084s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
6084
= 22⋅32⋅132
|
Sign: |
1
|
Analytic conductor: |
0.387921 |
Root analytic conductor: |
0.789197 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 6084, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.069277895 |
L(21) |
≈ |
1.069277895 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+T2 |
| 3 | C1 | (1−T)2 |
| 13 | C2 | 1+6T+pT2 |
good | 5 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 7 | C22 | 1−10T2+p2T4 |
| 11 | C2 | (1−pT2)2 |
| 17 | C2 | (1+2T+pT2)2 |
| 19 | C22 | 1−2T2+p2T4 |
| 23 | C2 | (1−4T+pT2)2 |
| 29 | C2 | (1+10T+pT2)2 |
| 31 | C22 | 1+38T2+p2T4 |
| 37 | C22 | 1−10T2+p2T4 |
| 41 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 43 | C2 | (1−4T+pT2)2 |
| 47 | C22 | 1+50T2+p2T4 |
| 53 | C2 | (1+6T+pT2)2 |
| 59 | C22 | 1−102T2+p2T4 |
| 61 | C2 | (1−2T+pT2)2 |
| 67 | C22 | 1−130T2+p2T4 |
| 71 | C2 | (1−pT2)2 |
| 73 | C22 | 1−130T2+p2T4 |
| 79 | C2 | (1+pT2)2 |
| 83 | C22 | 1−150T2+p2T4 |
| 89 | C22 | 1−142T2+p2T4 |
| 97 | C22 | 1−50T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.81502284481490964825941282866, −14.21173017908092884179812633889, −13.74217914458887684779145517637, −12.91154339683631396817715304873, −12.89700338987594582710171365238, −12.35987154513940471821027925503, −11.12830875965079958923609098612, −11.10594759747666845413619050874, −10.08531224531131389879503994586, −9.511202414981599377293774012324, −8.984026452504948289969072761145, −8.851745622938911644148999350723, −7.66415074492954259569590107456, −7.41831476835950984450226175229, −6.79786971902108167486082243354, −5.54761891959354108169770988651, −4.85249707345187774716120514420, −4.09590559657322186514860263713, −3.11282312486137849791066275163, −2.16401043466288981441025505835,
2.16401043466288981441025505835, 3.11282312486137849791066275163, 4.09590559657322186514860263713, 4.85249707345187774716120514420, 5.54761891959354108169770988651, 6.79786971902108167486082243354, 7.41831476835950984450226175229, 7.66415074492954259569590107456, 8.851745622938911644148999350723, 8.984026452504948289969072761145, 9.511202414981599377293774012324, 10.08531224531131389879503994586, 11.10594759747666845413619050874, 11.12830875965079958923609098612, 12.35987154513940471821027925503, 12.89700338987594582710171365238, 12.91154339683631396817715304873, 13.74217914458887684779145517637, 14.21173017908092884179812633889, 14.81502284481490964825941282866